Abstract

Being able to identify instability regions is an important task for the designers of rotating machines. It allows discarding, since the early design stages, those configurations which may lead to catastrophic failures. Instability can be induced by different occurrences such as an unbalanced disk, torsional, and axial forces on the shaft or periodic variation of system parameters known as “parametric excitation.” In this paper, the stability of a Jeffcott rotor, parametrically excited by the time-varying stiffness of the rolling bearings, is studied. The harmonic balance method (HBM) is here applied as an approximate procedure to obtain the well-known “transition curves (TCs)” which separate the stable from the unstable regions of the design parameter space. One major challenge in the HBM application is identifying an adequate harmonic support (i.e., number of harmonics in the Fourier formulation), necessary to produce trustworthy results. A procedure to overcome this issue is here proposed and termed “trained HBM” (THBM). The results obtained by THBM are compared to those computed by Floquet theory, here used as a reference. The THBM proves to be able to produce reliable TCs in a timely manner, compatible with the design process.

References

References
1.
Champneys
,
A.
,
2013
, “
Dynamics of Parametric Excitation
,”
Encyclopedia of Complexity and Systems Science
,
Springer
,
New York
, pp.
1
31
.
2.
Qaderi
,
M. S.
,
Hosseini
,
S. A. A.
, and
Zamanian
,
M.
,
2018
, “
Combination Parametric Resonance of Nonlinear Unbalanced Rotating Shafts
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
11
), p.
111002
.10.1115/1.4041029
3.
Das
,
A. S.
,
Dutt
,
J. K.
, and
Ray
,
K.
,
2010
, “
Active Vibration Control of Unbalanced Flexible Rotor-Shaft Systems Parametrically Excited Due to Base Motion
,”
Appl. Math. Model
,
34
(
9
), pp.
2353
2369
.10.1016/j.apm.2009.11.002
4.
Han
,
Q.
, and
Chu
,
F.
,
2015
, “
Parametric Instability of Flexible Rotor-Bearing System Under Time-Periodic Base Angular Motions
,”
Appl. Math. Model
,
39
(
15
), pp.
4511
4522
.10.1016/j.apm.2014.10.064
5.
Yi
,
Y.
,
Qiu
,
Z.
, and
Han
,
Q.
,
2018
, “
The Effect of Time-Periodic Base Angular Motions Upon Dynamic Response of Asymmetric Rotor Systems
,”
Adv. Mech. Eng.
,
10
(
3
), pp.
1
12
.10.1177/1687814018767172
6.
Ishida
,
Y.
, and
Inoue
,
T.
,
2006
, “
Detection of a Rotor Crack Using a Harmonic Excitation and Nonlinear Vibration Analysis
,”
ASME J. Vib. Acoust.
,
128
(
6
), pp.
741
749
.10.1115/1.2346693
7.
Han
,
Q.
, and
Chu
,
F.
,
2013
, “
Parametric Instability of a Jeffcott Rotor With Rotationally Asymmetric Inertia and Transverse Crack
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
827
842
.10.1007/s11071-013-0835-6
8.
Sawicki
,
J. T.
, and
Kulesza
,
Z.
,
2014
, “
Stability of a Cracked Rotor Subjected to Parametric Excitation
,”
ASME Paper No. GT2014-26741
.10.1115/GT2014-26741
9.
Zhang
,
Z.
,
Chen
,
Y.
, and
Cao
,
Q.
,
2015
, “
Bifurcations and Hysteresis of Varying Compliance Vibrations in the Primary Parametric Resonance for a Ball Bearing
,”
J. Sound Vib.
,
350
, pp.
171
184
.10.1016/j.jsv.2015.04.003
10.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
.10.1006/jsvi.1999.3108
11.
Harsha
,
S. P.
,
2005
, “
Non-Linear Dynamic Response of a Balanced Rotor Supported on Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
19
(
3
), pp.
551
578
.10.1016/j.ymssp.2004.04.002
12.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2013
, “
Stability Analysis of a Rotor-Bearing System With Time-Varying Bearing Stiffness Due to Finite Number of Balls and Unbalanced Force
,”
J. Sound Vib.
,
332
(
25
), pp.
6768
6784
.10.1016/j.jsv.2013.08.002
13.
Chen
,
G.
,
2009
, “
Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
061001
.10.1115/1.3142883
14.
Vlajic
,
N.
,
Liu
,
X.
,
Karki
,
H.
, and
Balachandran
,
B.
,
2014
, “
Torsional Oscillations of a Rotor With Continuous Stator Contact
,”
Int. J. Mech. Sci.
,
83
, pp.
65
75
.10.1016/j.ijmecsci.2014.03.025
15.
Kim
,
Y. B.
, and
Choi
,
S. K.
,
1997
, “
A Multiple Harmonic Balance Method for the Internal Resonant Vibration of a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
208
(
5
), pp.
745
761
.10.1006/jsvi.1997.1221
16.
Liu
,
Z.
, and
Wang
,
Y.
,
2017
, “
Periodicity and Stability in Transverse Motion of a Nonlinear Rotor-Bearing System Using Generalized Harmonic Balance Method
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022502
.10.1115/1.4034257
17.
Lazarus
,
A.
, and
Thomas
,
O.
,
2010
, “
A Harmonic-Based Method for Computing the Stability of Periodic Solutions of Dynamical Systems
,”
C. R. Mech.
,
338
(
9
), pp.
510
517
.10.1016/j.crme.2010.07.020
18.
Nayfeh
,
A. H.
, and
Mook
,
T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
Hoboken, NJ
.
19.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2014
, “
Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor–Stator Dynamics
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2501
2515
.10.1007/s11071-014-1606-8
20.
Villa
,
C.
,
Sinou
,
J.
, and
Thouverez
,
F.
,
2008
, “
Stability and Vibration Analysis of a Complex Flexible Rotor Bearing System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
804
821
.10.1016/j.cnsns.2006.06.012
21.
Von Groll
,
G.
, and
Ewins
,
D.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
22.
Tehrani
,
G. G.
,
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2020
, “
Stability Analysis of a Parametrically Excited Ball Bearing System
,”
Int. J. Non. Linear. Mech.
,
120
, p.
103350
.10.1016/j.ijnonlinmec.2019.103350
23.
Kovacic
,
I.
,
Rand
,
R.
, and
Mohamed Sah
,
S.
,
2018
, “
Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features
,”
ASME Appl. Mech. Rev.
,
70
(
2
), p.
020802
.10.1115/1.4039144
24.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
, John
Wiley & Sons,
Hoboken, NJ
.
25.
Brewe
,
D. E.
, and
Hamrock
,
B. J.
,
1977
, “
Simplified Solution for Elliptical-Contact Deformation Between Two Elastic Solids
,”
ASME J. of Lubrication Tech.,
99
(
4
), pp.
485
487
.10.1115/1.3453245
26.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
, “
Applied Nonlinear Dynamics
,”
Wiley
,
Hoboken, NJ
.10.1002/9783527617548
27.
Rand
,
R. H.
,
2014
, “
Lecture Notes on Nonlinear Vibrations
,”
Cornell University
,
Ithaca, NY
.http://pi.math.cornell.edu/~rand/randpdf/nlvibe45_040129.pdf
28.
Krack
,
M.
, and
Gross
,
J.
,
2019
, “
Theory of Harmonic Balance. In: Harmonic Balance for Nonlinear Vibration Problems
,”
Math. Eng.
,
Springer
,
Cham, Switzerland
.
29.
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2017
, “
A Method to Solve the Efficiency-Accuracy Trade-Off of Multi-Harmonic Balance Calculation of Structures With Friction Contacts
,”
Int. J. Non-Linear Mech.
,
92
, pp.
25
40
.10.1016/j.ijnonlinmec.2017.03.010
30.
Szemplińska-Stupnicka
,
W.
,
1978
, “
The Generalized Harmonic Balance Method for Determining the Combination Resonance in the Parametric Dynamic Systems
,”
J. Sound Vib.
,
58
(
3
), pp.
347
361
.10.1016/S0022-460X(78)80043-1
You do not currently have access to this content.