Abstract

Sensitivity analysis of transient response plays a crucial role in structural dynamics optimization. In this paper, the sensitivity analysis method for calculating the first-order derivatives of the nonlinear transient response using the real-imaginary perturbations (RIP) in the complex domain is proposed. Independent design parameters are synchronously perturbed using real and imaginary perturbations, respectively. The complex variable finite element method is employed to compute the complex transient response of the perturbed model. The nonlinear transient response sensitivities with respect to each parameter are obtained by separately extracting the real and imaginary responses. The computational accuracy and efficiency of the proposed method are demonstrated by employing a nonlinear multidegree-of-freedom system and a cantilever beam with nonlinear elastic supports. Results show that the response sensitivity with respect to multiple design parameters is obtained accurately by using the proposed method, the computational efficiency of which is increased compared with the complex variable method (CVM). The stability of the transient response sensitivity is significantly affected by the parameter perturbations in the real and imaginary parts. The RIP-imaginary-based response sensitivity is feasible even for an extremely small perturbation in the imaginary part; the RIP-real-based response sensitivity is stable only within a limited real perturbation range.

References

References
1.
Mottershead
,
J. E.
,
Link
,
M.
, and
Friswell
,
M. I.
,
2011
, “
The Sensitivity Method in Finite Element Model Updating: A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2275
2296
.10.1016/j.ymssp.2010.10.012
2.
Grip
,
N.
,
Sabourova
,
N.
, and
Tu
,
Y. M.
,
2017
, “
Sensitivity-Based Model Updating for Structural Damage Identification Using Total Variation Regularization
,”
Mech. Syst. Signal Process.
,
84
, pp.
365
383
.10.1016/j.ymssp.2016.07.012
3.
Cao
,
Z. F.
,
Fei
,
Q. G.
,
Jiang
,
D.
, and
Wu
,
S. Q.
,
2017
, “
Substructure-Based Model Updating Using Residual Flexibility Mixed-Boundary Method
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
759
769
.10.1007/s12206-017-0127-z
4.
Yuan
,
Z. X.
,
Liang
,
P.
,
Silva
,
T.
,
Yu
,
K. P.
, and
Mottershead
,
J. E.
,
2019
, “
Parameter Selection for Model Updating With Global Sensitivity Analysis
,”
Mech. Syst. Signal Pr.
,
115
, pp.
483
496
.10.1016/j.ymssp.2018.05.048
5.
Cao
,
Z.
,
Fei
,
Q.
,
Jiang
,
D.
,
Zhang
,
D.
,
Jin
,
H.
, and
Zhu
,
R.
,
2020
, “
Dynamic Sensitivity-Based Finite Element Model Updating for Nonlinear Structures Using Time-Domain Responses
,”
Int. J. Mech. Sci.
,
184
, p.
105788
.10.1016/j.ijmecsci.2020.105788
6.
Cao
,
Z. F.
,
Fei
,
Q. G.
,
Jiang
,
D.
,
Wu
,
S. Q.
, and
Fan
,
Z. R.
,
2019
, “
Model Updating of a Stitched Sandwich Panel Based on Multistage Parameter Selection
,”
Math Probl. Eng.
,
2019
, pp.
1
15
.10.1155/2019/1584953
7.
Chen
,
S. F.
,
Fei
,
Q. G.
,
Jiang
,
D.
, and
Cao
,
Z. F.
,
2018
, “
Determination of Thermo-Elastic Parameters for Dynamical Modeling of 2.5D C/SiC Braided Composites
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
231
243
.10.1007/s12206-017-1224-8
8.
Jiang
,
D.
,
Li
,
Y. B.
,
Fei
,
Q. G.
, and
Wu
,
S. Q.
,
2015
, “
Prediction of Uncertain Elastic Parameters of a Braided Composite
,”
Compos. Struct.
,
126
, pp.
123
131
.10.1016/j.compstruct.2015.02.004
9.
Jiang
,
D.
,
Zhang
,
D. H.
,
Fei
,
Q. G.
, and
Wu
,
S. Q.
,
2014
, “
An Approach on Identification of Equivalent Properties of Honeycomb Core Using Experimental Modal Data
,”
Finite Element Anal. Des.
,
90
, pp.
84
92
.10.1016/j.finel.2014.06.006
10.
Zhu
,
H. P.
,
Mao
,
L.
, and
Weng
,
S.
,
2014
, “
A Sensitivity-Based Structural Damage Identification Method With Unknown Input Excitation Using Transmissibility Concept
,”
J. Sound Vib.
,
333
(
26
), pp.
7135
7150
.10.1016/j.jsv.2014.08.022
11.
Fei
,
Q. G.
,
Xu
,
Y. L.
,
Ng
,
C. L.
,
Wong
,
K. Y.
,
Chan
,
W. Y.
, and
Man
,
K. L.
,
2007
, “
Structural Health Monitoring Oriented Finite Element Model of Tsing Ma Bridge Tower
,”
Int. J. Struct. Stab. Dyn.
,
07
(
04
), pp.
647
668
.10.1142/S0219455407002502
12.
Noël
,
L.
,
Miegroet
,
L. V.
, and
Duysinx
,
P.
,
2016
, “
Analytical Sensitivity Analysis Using the Extended Finite Element Method in Shape Optimization of Bimaterial Structures
,”
Int. J. Numer. Method Eng.
,
107
(
8
), pp.
669
695
.10.1002/nme.5181
13.
Nechak
,
L.
,
Gillot
,
F.
,
Besset
,
S.
, and
Sinou
,
J. J.
,
2015
, “
Sensitivity Analysis and Kriging Based Models for Robust Stability Analysis of Brake Systems
,”
Mech. Res. Commun.
,
69
, pp.
136
145
.10.1016/j.mechrescom.2015.08.001
14.
Zhou
,
Y. D.
, and
Fei
,
Q. G.
,
2015
, “
Dynamic Design of Stiffeners for a Typical Panel Using Topology Optimization and Finite Element Analysis
,”
Adv. Mech. Eng.
,
7
(
3
), pp.
1
8
.10.1177/1687814015572465
15.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process.
,
83
, pp.
2
35
.10.1016/j.ymssp.2016.07.020
16.
Kang
,
B. S.
,
Park
,
G. J.
, and
Arora
,
J. S.
,
2006
, “
A Review of Optimization of Structures Subjected to Transient Loads
,”
Struct. Multidiscip. Optim.
,
31
(
2
), pp.
81
95
.10.1007/s00158-005-0575-4
17.
Lu
,
Z. R.
, and
Law
,
S. S.
,
2007
, “
Features of Dynamic Response Sensitivity and Its Application in Damage Detection
,”
J. Sound Vib.
,
303
(
1–2
), pp.
305
329
.10.1016/j.jsv.2007.01.021
18.
Weng
,
S.
,
Tian
,
W.
,
Zhu
,
H. P.
,
Xia
,
Y.
,
Gao
,
F.
,
Zhang
,
Y. T.
, and
Li
,
J. J.
,
2017
, “
Dynamic Condensation Approach to Calculation of Structural Responses and Response Sensitivities
,”
Mech. Syst. Signal Process.
,
88
, pp.
302
317
.10.1016/j.ymssp.2016.11.025
19.
Yan
,
K.
, and
Cheng
,
G. D.
,
2018
, “
An Adjoint Method of Sensitivity Analysis for Residual Vibrations of Structures Subject to Impacts
,”
J. Sound Vib.
,
418
, pp.
15
35
.10.1016/j.jsv.2017.12.015
20.
Callejo
,
A.
, and
Dopico
,
D.
,
2019
, “
Direct Sensitivity Analysis of Multibody Systems: A Vehicle Dynamics Benchmark
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021004
.10.1115/1.4041960
21.
Park
,
S.
,
Kapania
,
R. K.
, and
Kim
,
S. J.
,
1999
, “
Nonlinear Transient Response and Second-Order Sensitivity Using Time Finite Element Method
,”
AIAA J.
,
37
(
5
), pp.
613
622
.10.2514/2.761
22.
Gu
,
Q.
, and
Wang
,
G.
,
2013
, “
Direct Differentiation Method for Response Sensitivity Analysis of a Bounding Surface Plasticity Soil Model
,”
Soil Dyn. Earthquake Eng.
,
49
, pp.
135
145
.10.1016/j.soildyn.2013.01.028
23.
Ding
,
Z.
,
Li
,
L.
,
Li
,
X. B.
, and
Kong
,
J. Y.
,
2018
, “
A Comparative Study of Design Sensitivity Analysis Based on Adjoint Variable Method for Transient Response of Non-Viscously Damped Systems
,”
Mech. Syst. Signal Process.
,
110
, pp.
390
411
.10.1016/j.ymssp.2018.03.043
24.
Yun
,
K. S.
, and
Youn
,
S. K.
,
2017
, “
Design Sensitivity Analysis for Transient Response of Non-Viscously Damped Dynamic Systems
,”
Struct. Multidiscip. Optim.
,
55
(
6
), pp.
2197
2210
.10.1007/s00158-016-1636-6
25.
Callejo
,
A.
,
Sonneville
,
V.
, and
Bauchau
,
O. A.
,
2019
, “
Discrete Adjoint Method for the Sensitivity Analysis of Flexible Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021001
.10.1115/1.4041237
26.
Ding
,
Z.
,
Li
,
L.
,
Zou
,
G. M.
, and
Kong
,
J. Y.
,
2019
, “
Design Sensitivity Analysis for Transient Response of Non-Viscously Damped Systems Based on Direct Differentiate Method
,”
Mech. Syst. Signal Process.
,
121
, pp.
322
342
.10.1016/j.ymssp.2018.11.031
27.
Zhu
,
R.
,
Fei
,
Q. G.
,
Jiang
,
D.
, and
Cao
,
Z. F.
,
2019
, “
Dynamic Sensitivity Analysis Based on Sherman–Morrison–Woodbury Formula
,”
AIAA J.
,
57
(
11
), pp.
4992
5001
.10.2514/1.J058280
28.
Iott
,
J.
,
Haftka
,
R. T.
, and
Adelman
,
H. M.
,
1985
,
Selecting Step Sizes in Sensitivity Analysis by Finite Differences
,
NASA
,
Washington, DC
.
29.
Keulen
,
F. V.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2005
, “
Review of Options for Structural Design Sensitivity Analysis. Part 1: Linear Systems
,”
Comput. Methods Appl. Mech.
,
194
(
30–33
), pp.
3213
3243
.10.1016/j.cma.2005.02.002
30.
Lyness
,
J. N.
, and
Moler
,
C. B.
,
1967
, “
Numerical Differentiation of Analytic Functions
,”
SIAM J. Numer. Anal.
,
4
(
2
), pp.
202
210
.10.1137/0704019
31.
Anderson
,
W. K.
,
Newman
,
J. C.
,
Whitfield
,
D. L.
, and
Nielsen
,
E. J.
,
2001
, “
Sensitivity Analysis for Navier-Stokes Equations on Unstructured Meshes Using Complex Variables
,”
AIAA J.
,
39
(
1
), pp.
56
63
.10.2514/2.1270
32.
Voorhees
,
A.
,
Millwater
,
H.
, and
Bagley
,
R.
,
2011
, “
Complex Variable Methods for Shape Sensitivity of Finite Element Models
,”
Finite Elem. Anal. Des.
,
47
(
10
), pp.
1146
1156
.10.1016/j.finel.2011.05.003
33.
Kim
,
S. H.
,
Ryu
,
J. Y.
, and
Cho
,
M. Y.
,
2011
, “
Numerically Generated Tangent Stiffness Matrices Using the Complex Variable Derivative Method for Nonlinear Structural Analysis
,”
Comput. Methods Appl. Mech.
,
200
(
1–4
), pp.
403
413
.10.1016/j.cma.2010.09.004
34.
Monsalvo
,
J. F.
,
García
,
M. J.
,
Millwater
,
H.
, and
Feng
,
Y. S.
,
2017
, “
Sensitivity Analysis for Radiofrequency Induced Thermal Therapies Using the Complex Finite Element Method
,”
Finite Elem. Anal. Des.
,
135
, pp.
11
21
.10.1016/j.finel.2017.07.001
35.
Jin
,
W. Y.
,
Dennis
,
B. H.
, and
Wang
,
B. P.
,
2010
, “
Improved Sensitivity Analysis Using a Complex Variable Semi-Analytical Method
,”
Struct Multidiscip. Optim.
,
41
(
3
), pp.
433
439
.10.1007/s00158-009-0427-8
36.
Wang
,
B. P.
, and
Apte
,
A. P.
,
2006
, “
Complex Variable Method for Eigensolution Sensitivity Analysis
,”
AIAA J.
,
44
(
12
), pp.
2958
2961
.10.2514/1.19225
37.
Garza
,
J.
, and
Millwater
,
H.
,
2015
, “
Multicomplex Newmark-Beta Time Integration Method for Sensitivity Analysis in Structural Dynamics
,”
AIAA J.
,
53
(
5
), pp.
1188
1198
.10.2514/1.J053282
38.
Abreu
,
R.
,
Stich
,
D.
, and
Morales
,
J.
,
2013
, “
On the Generalization of the Complex Step Method
,”
J. Comput. Appl. Math.
,
241
, pp.
84
102
.10.1016/j.cam.2012.10.001
39.
Abreu
,
R.
,
Stich
,
D.
, and
Morales
,
J.
,
2015
, “
The Complex-Step-Finite Difference Method
,”
Geophys. J. Int.
,
202
(
1
), pp.
72
93
.10.1093/gji/ggv125
40.
Wang
,
X.
,
Hill
,
T. L.
,
Neild
,
S. A.
,
Shaw
,
A. D.
,
Haddad
,
K. H.
, and
Friswell
,
M. I.
,
2018
, “
Model Updating Strategy for Structures With Localised Nonlinearities Using Frequency Response Measurements
,”
Mech. Syst. Signal Process.
,
100
, pp.
940
961
.10.1016/j.ymssp.2017.08.004
41.
Conte
,
J. P.
,
Vijalapura
,
P. K.
, and
Meghella
,
M.
,
2003
, “
Consistent Finite-Element Response Sensitivity Analysis
,”
J. Eng. Mech.
,
129
(
12
), pp.
1380
1393
.10.1061/(ASCE)0733-9399(2003)129:12(1380)
42.
Wagner
,
D.
, and
Millwater
,
H.
,
2012
, “
2D Weight Function Development Using a Complex Taylor Series Expansion Method
,”
Eng. Fract. Mech.
,
86
, pp.
23
37
.10.1016/j.engfracmech.2012.02.006
43.
Millwater
,
H.
,
Wagner
,
D.
,
Baines
,
A.
, and
Lovelady
,
K.
,
2013
, “
Improved WCTSE Method for the Generation of 2D Weight Functions Through Implementation Into a Commercial Finite Element Code
,”
Eng. Fract. Mech.
,
109
, pp.
302
309
.10.1016/j.engfracmech.2013.07.012
44.
Wang
,
W. J.
,
Clausen
,
P. M.
, and
Bletzinger
,
K. U.
,
2015
, “
Improved Semi-Analytical Sensitivity Analysis Using a Secant Stiffness Matrix for Geometric Nonlinear Shape Optimization
,”
Comput. Struct.
,
146
, pp.
143
151
.10.1016/j.compstruc.2014.08.008
45.
Wilke
,
D. N.
, and
Kok
,
S.
,
2012
, “
Numerical Sensitivity Computation for Discontinuous Gradient-Only Optimization Problems Using the Complex-Step Method
,”
10th World Congress on Computational Mechanics
, Sao Paulo, Brazil, July 8–13, pp.
3665
3676
.10.5151/meceng-wccm2012-19508
46.
Montoya
,
A.
,
Fielder
,
R.
,
Gomez-Farias
,
A.
, and
Millwater
,
H.
,
2015
, “
Finite-Element Sensitivity for Plasticity Using Complex Variable Methods
,”
J. Eng. Mech.
,
141
(
2
), p.
04014118
.10.1061/(ASCE)EM.1943-7889.0000837
You do not currently have access to this content.