Abstract

Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method can significantly reduce the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.

References

References
1.
Pekar
,
L.
, and
Gao
,
Q.
,
2018
, “
Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results
,”
IEEE Access
,
6
, pp.
35457
35491
.10.1109/ACCESS.2018.2851453
2.
Sieber
,
J.
, and
Krauskopf
,
B.
,
2008
, “
Control Based Bifurcation Analysis for Experiments
,”
Nonlinear Dyn.
,
51
(
3
), pp.
365
377
.10.1007/s11071-007-9217-2
3.
Kalmár-Nagy
,
T.
,
Stépán
,
G.
, and
Moon
,
F. C.
,
2001
, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
,
26
(
2
), pp.
121
142
.10.1023/A:1012990608060
4.
Balachandran
,
B.
,
2001
, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
359
(
1781
), pp.
793
819
.10.1098/rsta.2000.0755
5.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.10.1016/S0022-460X(02)01131-8
6.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
.10.1177/1077546304044891
7.
Long
,
X.
, and
Balachandran
,
B.
,
2010
, “
Stability of Up-Milling and Down-Milling Operations With Variable Spindle Speed
,”
J. Vib. Control
,
16
(
7–8
), pp.
1151
1168
.10.1177/1077546309341131
8.
Nayfeh
,
A. H.
, and
Nayfeh
,
N. A.
,
2012
, “
Time-Delay Feedback Control of Lathe Cutting Tools
,”
J. Vib. Control
,
18
(
8
), pp.
1106
1115
.10.1177/1077546311410763
9.
Kane
,
D. M.
, and
Shore
,
K. A.
,
2005
,
Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers
,
Wiley
, Chichester, UK.
10.
Foss
,
J.
,
Longtin
,
A.
,
Mensour
,
B.
, and
Milton
,
J.
,
1996
, “
Multistability and Delayed Recurrent Loops
,”
Phys. Rev. Lett.
,
76
(
4
), pp.
708
711
.10.1103/PhysRevLett.76.708
11.
Stépán
,
G.
, and
Kollár
,
L.
,
2000
, “
Balancing With Reflex Delay
,”
Math. Comput. Model.
,
31
(
4–5
), pp.
199
205
.10.1016/S0895-7177(00)00039-X
12.
Ahsan
,
Z.
,
Uchida
,
T. K.
,
Subudhi
,
A.
, and
Vyasarayani
,
C. P.
,
2016
, “
Stability of Human Balance With Reflex Delays Using Galerkin Approximations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041009
.
13.
Orosz
,
G.
, and
Stépán
,
G.
,
2004
, “
Hopf Bifurcation Calculations in Delayed Systems With Translational Symmetry
,”
J. Nonlinear Sci.
,
14
(
6
), pp.
505
528
.10.1007/s00332-004-0625-4
14.
Bocharov
,
G. A.
, and
Rihan
,
F. A.
,
2000
, “
Numerical Modelling in Biosciences Using Delay Differential Equations
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
183
199
.10.1016/S0377-427(00)00468-4
15.
Rodrigues
,
S.
,
Barton
,
D.
,
Szalai
,
R.
,
Benjamin
,
O.
,
Richardson
,
M. P.
, and
Terry
,
J. R.
,
2009
, “
Transitions to Spike-Wave Oscillations and Epileptic Dynamics in a Human Cortico-Thalamic Mean-Field Model
,”
J. Comput. Neurosci.
,
27
(
3
), pp.
507
526
.10.1007/s10827-009-0166-2
16.
Alvarez-Rodriguez
,
U.
,
Perez-Leija
,
A.
,
Egusquiza
,
I. L.
,
Gräfe
,
M.
,
Sanz
,
M.
,
Lamata
,
L.
,
Szameit
,
A.
, and
Solano
,
E.
,
2017
, “
Advanced-Retarded Differential Equations in Quantum Photonic Systems
,”
Sci. Rep.
,
7
(
1
), p.
42933
.10.1038/srep42933
17.
Kyrychko
,
Y. N.
, and
Hogan
,
S. J.
,
2010
, “
On the Use of Delay Equations in Engineering Applications
,”
J. Vib. Control
,
16
(
7–8
), pp.
943
960
.10.1177/1077546309341100
18.
Young
,
L.-S.
,
Ruschel
,
S.
,
Yanchuk
,
S.
, and
Pereira
,
T.
,
2019
, “
Consequences of Delays and Imperfect Implementation of Isolation in Epidemic Control
,”
Sci. Rep.
,
9
(
1
), p.
3505
.10.1038/s41598-019-39714-0
19.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Scientific & Technical, Harlow, UK
.
20.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Automat. Contr.
,
47
(
5
), pp.
793
797
.10.1109/TAC.2002.1000275
21.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
22.
Sun
,
J.-Q.
, and
Song
,
B.
,
2009
, “
Control Studies of Time-Delayed Dynamical Systems With the Method of Continuous Time Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3933
3944
.10.1016/j.cnsns.2009.02.011
23.
Mann
,
B. P.
, and
Patel
,
B. R.
,
2010
, “
Stability of Delay Equations Written as State Space Models
,”
J. Vib. Control
,
16
(
7–8
), pp.
1067
1085
.10.1177/1077546309341111
24.
Vyhlidal
,
T.
, and
Zitek
,
P.
,
2009
, “
Mapping Based Algorithm for Large-Scale Computation of Quasi-Polynomial Zeros
,”
IEEE Trans. Automat. Control
,
54
(
1
), pp.
171
177
.10.1109/TAC.2008.2008345
25.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
26.
Vyasarayani
,
C. P.
,
2012
, “
Galerkin Approximations for Higher Order Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031004
.10.1115/1.4005931
27.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
, Time-Delay Systems: Analysis and Control Using the Lambert W Function, World Scientific, Hackensack, NJ.
28.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
1
), pp.
88
97
.10.1115/1.1876494
29.
Bachrathy
,
D.
, and
Stépán
,
G.
,
2012
, “
Bisection Method in Higher Dimensions and the Efficiency Number
,”
Period Polytech. Mech. Eng.
,
56
(
2
), pp.
81
86
.10.3311/pp.me.2012-2.01
30.
Bachrathy
,
D.
, and
Stepan
,
G.
,
2013
, “
Improved Prediction of Stability Lobes With Extended Multi Frequency Solution
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
411
414
.10.1016/j.cirp.2013.03.085
31.
Che
,
Y.
,
Liu
,
J.
, and
Cheng
,
C.
,
2019
, “
Multi-Fidelity Modeling in Sequential Design for Stability Identification in Dynamic Time-Delay Systems
,”
Chaos
,
29
(
9
), p.
093105
.10.1063/1.5097934
32.
Zhang
,
L.
, and
Stepan
,
G.
,
2016
, “
Exact Stability Chart of an Elastic Beam Subjected to Delayed Feedback
,”
J. Sound Vib.
,
367
, pp.
219
232
.10.1016/j.jsv.2016.01.002
33.
Wang
,
Z.
,
Liang
,
S.
,
Molnar
,
C. A.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2020
, “
Parametric Continuation Algorithm for Time-Delay Systems and Bifurcation Caused by Multiple Characteristic Roots
,”
Nonlinear Dyn., epub.
34.
Samukham
,
S.
,
Uchida
,
T. K.
, and
Vyasarayani
,
C. P.
,
2020
, “
Fast Generation of Stability Charts for Time-Delay Systems Using Continuation of Characteristic Roots
,” arxiv.org/abs/2005.10719.
You do not currently have access to this content.