In the mechanical engineering world, there is a growing interest in being able to create so-called “digital twins” to assess the impact to performance or response. Part of the challenge is to be able to include and assess manufactured geometries as opposed to nominal design intent, particularly for components that are sensitive to small shape variations. In this paper, we show how the update of digital models adopted in computer aided engineering (CAE) can be conducted according to a mesh morphing workflow based on radial basis functions (RBF). The CAE mesh of the nominal design is updated onto the actual one as acquired from surveying a manufactured individual. The concept is demonstrated on a practical application, the wing structure of the RIBES experiment, showing how the new proposed method compares with a traditional one based on the reconstruction of the geometrical model.

References

1.
Mongeau
,
M.
, and
Bes
,
C.
,
2005
, “
Aircraft Maintenance Jacking Problem Via Optimization
,”
IEEE Trans. Aerosp. Electron. Syst.
,
41
(
1
), pp.
99
109
.
2.
Radvar-Esfahlan
,
H.
, and
Tahan
,
S.-A.
,
2012
, “
Nonrigid Geometric Metrology Using Generalized Numerical Inspection Fixtures
,”
Precis. Eng.
,
36
(
1
), pp.
1
9
.
3.
Abenhaim
,
G. N.
,
Desrochers
,
A.
,
Tahan
,
A. S.
, and
Bigeon
,
J.
,
2015
, “
A Virtual Fixture Using a FE-Based Transformation Model Embedded Into a Constrained Optimization for the Dimensional Inspection of Nonrigid Parts
,”
Comput.-Aided Des.
,
62
, pp.
248
258
.
4.
Biancolini
,
M. E.
,
2017
, “
Compensation of Metrological Data
,”
Fast Radial Basis Functions Engineering Applications
, Springer, Cham, Switzerland, Chap. 12.6.
5.
Kemmler
,
S.
,
Dazer
,
M.
,
Leopold
,
T.
, and
Bertsche
,
B.
,
2014
, “
Method for the Development of a Functional Adaptive Simulation Model for Designing Robust Products
,”
Weimar Optimization and Stochastic Days
, Weimar, Germany, Nov. 6–7, pp. 1–21.
6.
MacDonald
,
C.
,
Dion
,
B.
, and
Davoudabadi
,
M.
,
2017
, “
Creating a Digital Twin for a Pump
,”
ANSYS Adv.
,
1
, pp.
8
10
.https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/creating-a-digital-twin-for-a-pump-aa-v11-i1.pdf
7.
Jakobsson
,
S.
, and
Amoignon
,
O.
,
2007
, “
Mesh Deformation Using Radial Basis Functions for Gradient-Based Aerodynamic Shape Optimization
,”
Comput. Fluids
,
36
(
6
), pp.
1119
1136
.
8.
Rendall
,
T.
, and
Allen
,
C.
,
2009
, “
Efficient Mesh Motion Using Radial Basis Functions With Data Reduction Algorithms
,”
J. Comput. Phys.
,
228
(
17
), pp.
6231
6249
.
9.
de Boer
,
A.
,
van der Schoot
,
M.
, and
Bijl
,
H.
,
2007
, “
Mesh Deformation Based on Radial Basis Functions Interpolation
,”
Comput. Struct.
,
85
(
11–14
), pp.
784
795
.
10.
Biancolini
,
M. E.
,
2012
, “
Mesh Morphing and Smoothing by Means of Radial Basis Functions (RBF): A Practical Example Using Fluent and RBF Morph
,”
Handbook of Research on Computational Science and Engineering: Theory and Practice
,
J.
Leng
and
W.
Sharrock
, eds., Information Science Reference, Hershey, PA.
11.
Cenni
,
R.
,
Bertuzzi
,
G.
, and
Cova
,
M.
,
2016
, “
A CAD-MESH Mixed Approach to Enhance Shape Optimization Capabilities
,” International CAE Conference, Parma, Italy, Oct. 17–18.
12.
Sieger
,
D.
,
Menzel
,
S.
, and
Botsch
,
M.
,
2014
, “
RBF Morphing Techniques for Simulation-Based Design Optimization
,”
Eng. Comput.
,
30
(
2
), pp.
161
174
.
13.
Cella
,
U.
, and
Biancolini
,
M. E.
,
2012
, “
Aeroelastic Analysis of Aircraft Wind-Tunnel Model Coupling Structural and Fluid Dynamic Codes
,”
AIAA J. Aircr.
,
49
(
2
), pp.
407
414
.
14.
Andrejašič
,
M.
,
Eržen
,
D.
,
Costa
,
E.
,
Porziani
,
S.
,
Biancolini
,
M. E.
, and
Groth
,
C.
,
2016
, “
A Mesh Morphing Based FSI Method Used in Aeronautical Optimization Applications
,”
ECCOMAS Congress
, Crete Island, Greece, June 5–10, Paper No. 7206.
15.
Botsch
,
M.
, and
Kobbelt
,
L.
,
2005
, “
Real-Time Shape Editing Using Radial Basis Functions
,”
Comput. Graph. Forum
,
24
(
3
), pp.
611
621
.
16.
Valentini
,
P. P.
, and
Biancolini
,
M. E.
,
2018
, “
Interactive Sculpting Using Augmented-Reality, Mesh Morphing, and Force Feedback: Force-Feedback Capabilities in an Augmented Reality Environment
,”
IEEE Consumer Electron. Mag.
,
7
(
2
), pp.
83
90
.
17.
Hardy
,
R.
,
1990
, “
Theory and Applications of the Multiquadric-Biharmonic Method 20 Years of Discovery 1968–1988
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
163
208
.
18.
Carr
,
J. C.
,
Beatson
,
R. K.
,
McCallum
,
B. C.
,
Fright
,
W. R.
,
McLennan
,
T. J.
, and
Mitchell
,
T. J.
,
2003
, “
Smooth Surface Reconstruction From Noisy Range Data
,”
First International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia
, Melbourne, Australia, Feb. 11–14, pp. 119–297.
19.
Boyd
,
J. P.
, and
Gildersleeve
,
K. W.
,
2011
, “
Numerical Experiments on the Condition Number of the Interpolation Matrices for Radial Basis Functions
,”
Appl. Numer. Math.
,
61
(
4
), pp.
443
459
.
20.
Beatson
,
R. K.
,
Powell
,
M. J. D.
, and
Tan
,
A. M.
,
2007
, “
Fast Evaluation of Polyharmonic Splines in Three Dimensions
,”
IMA J. Numer. Anal.
,
27
(
3
), pp.
427
450
.
21.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
(
1
), pp.
389
396
.
22.
Kansa, E. J.
,
1992
, “
Biographical Sketch of Rolland L. Hardy
,”
Comput. Math Appl.
,
24
(
12
), pp.
ix
x
.
23.
Ponzini
,
R.
,
Biancolini
,
M.
,
Rizzo
,
G.
, and
Morbiducci
,
U.
,
2012
, “
Radial Basis Functions for the Interpolation of Hemodynamics Flow Pattern: A Quantitative Analysis
,”
Computational Modelling of Objects Represented in Images III: Fundamentals, Methods and Applications
,
Taylor & Francis
, London, pp.
341
344
.
24.
Biancolini
,
M.
,
Brutti
,
C.
,
Chiappa
,
A.
, and
Salvini
,
P.
,
2015
, “
Post-Processing Strutturale Mediante Uso di Radial Basis Functions
,”
AIAS 44th National Congress
, Messina, Italy, Sept. 2–5, Paper No. 482.https://www.researchgate.net/publication/316663106_POST-PROCESSING_STRUTTURALE_MEDIANTE_USO_DI_RADIAL_BASIS_FUNCTIONS
25.
Vennell
,
R.
, and
Beatson
,
R.
,
2009
, “
A Divergence-Free Spatial Interpolator for Large Sparse Velocity Data Sets
,”
J. Geophys. Res.: Oceans
,
114
(
C10
), p.
10
.
26.
Carr
,
J. C.
,
Beatson
,
R. K.
,
Cherrie
,
J. B.
,
Mitchell
,
T. J.
,
Fright
,
W. R.
,
McCallum
,
B. C.
, and
Evans
,
T. R.
,
2001
, “
Reconstruction and Representation of 3D Objects With Radial Basis Functions
,”
28th Annual Conference on Computer Graphics and Interactive Techniques
(
SIGGRAPH'01
), Los Angeles, CA, Aug. 12–17, pp.
67
76
.
27.
Biancolini
,
M. E.
,
2017
, “
RBF Implicit Representation of Geometrical Entities
,”
Fast Radial Basis Functions for Engineering Applications
, Springer, Cham, Switzerland, Chap. 5.
28.
Biancolini
,
M. E.
, and
Valentini
,
P. P.
,
2018
, “
Virtual Human Bone Modelling by Interactive Sculpting, Mesh Morphing and Force-Feedback
,”
Int. J. Interact. Des. Manuf.
, 12(4), pp. 1223–1234.
29.
Babuška
,
I.
, and
Melenk
,
J. M.
,
1998
, “
The Partition of Unity Method
,”
Int. J. Numer. Methods Eng.
,
40
(
4
), pp.
727
758
.
30.
Biancolini
,
M. E.
,
2017
, “
Iterative Solvers
,”
Fast Radial Basis Functions for Engineering Applications
, Springer, Cham, Switzerland, Chap. 3.7.
31.
Biancolini
,
M.
,
Chiappa
,
A.
,
Giorgetti
,
F.
,
Groth
,
C.
,
Cella
,
U.
, and
Salvini
,
P.
,
2018
, “
A Balanced Load Mapping Method Based on Radial Basis Functions and Fuzzy Sets
,”
Int. J. Numer. Methods Eng.
,
115
(
12
), pp.
1411
1429
.
32.
Cella
,
U.
,
2017
, “
Setup and Validation of High Fidelity Aeroelastic Analysis Methods Based on RBF Mesh Morphing
,” Ph.D. thesis, University of Rome Tor Vergata, Rome, Italy.
33.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
34.
Biancolini
,
M. E.
,
Cella
,
U.
,
Groth
,
C.
,
Chiappa
,
A.
,
Giorgetti
,
F.
, and
Nicolosi
,
F.
,
2019
, “
Progresses in Fluid-Structure Interaction and Structural Optimization Numerical Tools Within the EU CS RIBES Project
,”
Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems
,
E.
Andrés-Pérez
,
L. M.
González
,
J.
Periaux
,
N.
Gauger
,
D.
Quagliarella
, and
K.
Giannakoglou
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
529
544
.
35.
Drela
,
M.
,
1989
, “
Xfoil: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics
,
T. J.
Mueller
, ed.,
Springer
,
Berlin
, pp.
1
12
.
You do not currently have access to this content.