The floating frame of reference (FFR) formulation is widely used in multibody system (MBS) simulations for the deformation analysis. Nonetheless, the use of elastic degrees-of-freedom (DOF) in the deformation analysis can increase significantly the problem dimension. For this reason, modal reduction techniques have been proposed in order to define a proper set of assumed body deformation modes. Crucial to the proper definition of these modes when the finite element (FE) FFR formulation is used is the concept of the reference conditions, which define the nature of the deformable body coordinate system. Substructuring techniques, such as the Craig–Bampton (CB) method, on the other hand, have been proposed for developing efficient models using an assembly of their lower order substructure models. In this study, the appropriateness and generality of using the CB method in MBS algorithms are discussed. It is shown that, when a set of reference conditions are not applied, the CB transformation leads to the free–free deformation modes. Because a square CB transformation is equivalent to a similarity transformation that does not alter the problem to be solved, the motivation of using the CB method in MBS codes to improve the solution is examined. This paper demonstrates that free–free deformation modes cannot be used in all applications, shedding light on the importance of the concept of the FE/FFR reference conditions. It is demonstrated numerically that a unique model resonance frequency is achieved using different modes associated with different reference conditions if the shapes are similar.

References

1.
Craig
,
R. R.
, Jr
.,
1983
,
Structural Dynamics: An Introduction to Computer Methods
, 1st ed.,
Wiley
,
New York
.
2.
Cardona
,
A.
,
2000
, “
Superelements Modeling in Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
4
(
2–3
), pp.
245
266
.
3.
Subbiah
,
M.
,
Sharan
,
A. M.
, and
Jain
,
J.
,
1988
, “
A Study of Dynamic Condensation Techniques for Machine Tools and Robotic Manipulators
,”
Mech. Mach. Theory
,
23
(
1
), pp.
63
69
.
4.
Liu
,
A. Q.
, and
Liew
,
K. M.
,
1994
, “
Non-Linear Substructure Approach for Dynamic Analysis of Rigid Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
114
(
3–4
), pp.
379
390
.
5.
Lim
,
S. P.
,
Liu
,
A. Q.
, and
Liew
,
K. M.
,
1994
, “
Dynamics of Flexible Multibody Systems Using Loaded-Interface Substructure Synthesis Approach
,”
Comput. Mech.
,
15
(
3
), pp.
270
283
.
6.
Mordfin
,
T. G.
,
1995
, “
Articulating Flexible Multibody Dynamics, Substructure Synthesis and Finite Elements
,”
Adv. Astronaut. Sci.
,
89
, pp.
1097
1116
.
7.
Haenle
,
U.
,
Dinkler
,
D.
, and
Kroeplin
,
B.
,
1995
, “
Interaction of Local and Global Nonlinearities of Elastic Rotating Structures
,”
AIAA J.
,
33
(
5
), pp.
933
937
.
8.
Liew
,
K. M.
,
Lee
,
S. E.
, and
Liu
,
A. Q.
,
1996
, “
Mixed-Interface Substructures for Dynamic Analysis of Flexible Multibody Systems
,”
Eng. Struct.
,
18
(
7
), pp.
495
503
.
9.
Fehr
,
J.
, and
Eberhard
,
P.
,
2011
, “
Simulation Process of Flexible Multibody Systems With Non-Modal Model Order Reduction Techniques
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
313
334
.
10.
Fischer
,
M.
, and
Eberhard
,
P.
,
2014
, “
Linear Model Reduction of Large Scale Industrial Models in Elastic Multibody Dynamics
,”
Multibody Syst. Dyn.
,
31
(
1
), pp.
27
46
.
11.
Ryu
,
J.
,
Kim
,
H. S.
, and
Wang
,
S.
,
1998
, “
A Method for Improving Dynamic Solutions in Flexible Multibody Dynamics
,”
Comput. Struct.
,
66
(
6
), pp.
765
776
.
12.
Wu
,
L.
, and
Tiso
,
P.
,
2016
, “
Nonlinear Model Order Reduction for Flexible Multibody Dynamics: A Modal Derivatives Approach
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
405
425
.
13.
Craig
,
R. R.
, Jr
., and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
14.
MSC Software
,
2009
, “
Adams.Flex
,” MSC Software Corporation, Newport Beach, CA, accessed Feb. 6, 2018, https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC9304&actp=RSS
15.
Milne
,
R. D.
,
1968
, “
Some Remarks on the Dynamics of Deformable Bodies
,”
AIAA J.
,
6
(
3
), pp.
556
558
.
16.
Likins
,
P. W.
,
1967
, “
Modal Method for the Analysis of Free Rotations of Spacecraft
,”
AIAA J.
,
5
(
7
), pp.
1304
1308
.
17.
de Veubeke
,
F. B.
,
1976
, “
The Dynamics of Flexible Bodies
,”
Int. J. Eng. Sci.
,
14
(
10
), pp.
895
913
.
18.
Canavin
,
J. R.
, and
Likins
,
P. W.
,
1977
, “
Floating Reference Frames for Flexible Spacecraft
,”
J. Spacecr. Rockets
,
14
(
12
), pp.
724
732
.
19.
Cavin
,
R. K.
, and
Dusto
,
A. R.
,
1977
, “
Hamilton's Principle: Finite Element Methods and Flexible Body Dynamics
,”
AIAA J.
,
15
(12), pp.
1684
1690
.
20.
Agrawal
,
O. P.
, and
Shabana
,
A. A.
,
1985
, “
Dynamic Analysis of Multibody Systems Using Component Modes
,”
Comput. Struct.
,
21
(
6
), pp.
1303
1312
.
21.
Shabana
,
A. A.
,
1996
, “
Resonance Conditions and Deformable Body Co-Ordinate Systems
,”
J. Sound Vib.
,
192
(
1
), pp.
389
398
.
22.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
23.
Shabana
,
A. A.
,
1982
, “
Dynamics of Large Scale Flexible Mechanical Systems
,” Ph.D. dissertation, University of Iowa, Iowa City, IA.
24.
Ashley
,
H.
,
1967
, “
Observations on the Dynamic Behavior of Large Flexible Bodies in Orbit
,”
AIAA J.
,
5
(
3
), pp.
460
469
.
25.
Chu
,
S. C.
, and
Pan
,
K. C.
,
1975
, “
Dynamic Response of a High-Speed Slider-Crank Mechanism With an Elastic Connecting Rod
,”
ASME J. Manuf. Sci. Eng.
,
97
(
2
), pp.
542
550
.
26.
Shabana
,
A. A.
, and
Wang
,
G.
,
2018
, “
Durability Analysis and Implementation of the Floating Frame of Reference Formulation
,”
Proc. Inst. Mech. Eng., Part J
(accepted).
You do not currently have access to this content.