This paper presents the coupled axial-transverse-rotational nonlinear forced vibrations of Timoshenko tapered beams made of an axially functionally graded (AFG) material subjected to an external harmonic excitation. Two sources of nonlinearities are considered in modeling and numerical simulations: (i) the geometric nonlinearities arising from induced nonlinear tension due to the clamped–clamped boundary conditions and large deformations, and (ii) nonlinear expressions to address the nonuniform geometry and mechanical properties of the beam along the length. More specifically, a nonlinear model is developed based on the Timoshenko beam theory accounting for shear deformation and rotational inertia. Exponential distributions are presumed for the cross-sectional area, moduli of elasticity, mass density, and Poisson's ratio of the AFG tapered Timoshenko beam. The kinetic and potential energies, the virtual work of the external harmonic distributed load, and the one done by damping are implemented into Hamilton's energy principle. The resultant nonuniform nonlinearly coupled partial differential equations are discretized into a set of nonlinear ordinary differential equations utilizing Galerkin's technique. In the discretization scheme, a large number of modes, both symmetric and asymmetric, are employed due to the asymmetric characteristic of the nonuniform beam with respect to its length. The effect of different parameters, including the gradient index and different taper ratios, on the force-vibration-amplitude and frequency-vibration-amplitude diagrams is examined; the effect of these parameters on the natural frequencies, internal resonances, and asymmetric characteristics of the AFG system is investigated as well.

References

1.
Ghayesh, M. H., Farokhi, H., Gholipour, A., and Tavallaeinejad, M., 2018, “
Nonlinear Oscillations of Functionally Graded Microplates
,”
Int. J. Eng. Sci.
,
122
, pp. 56–72.
2.
Yang
,
X.-D.
,
Chen
,
L.-Q.
, and
Zu
,
J. W.
,
2011
, “
Vibrations and Stability of an Axially Moving Rectangular Composite Plate
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011018
.
3.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Gholipour
,
A.
,
2017
, “
Oscillations of Functionally Graded Microbeams
,”
Int. J. Eng.
,
110
, pp.
35
53
.
4.
Awrejcewicz
,
J.
,
Krysko
,
A. V.
,
Pavlov
,
S. P.
,
Zhigalov
,
M. V.
, and
Krysko
,
V. A.
,
2017
, “
Stability of the Size-Dependent and Functionally Graded Curvilinear Timoshenko Beams
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041018
.
5.
Yan
,
T.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2012
, “
Nonlinear Dynamic Response of an Edge-Cracked Functionally Graded Timoshenko Beam Under Parametric Excitation
,”
Nonlinear Dyn.
,
67
(
1
), pp.
527
540
.
6.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2012
, “
Study of Small Scale Effects on the Nonlinear Vibration Response of Functionally Graded Timoshenko Microbeams Based on the Strain Gradient Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031009
.
7.
Chen
,
Y.
,
Fu
,
Y.
,
Zhong
,
J.
, and
Li
,
Y.
,
2017
, “
Nonlinear Dynamic Responses of Functionally Graded Tubes Subjected to Moving Load Based on a Refined Beam Model
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1441
1452
.
8.
Sari
,
M.
,
Shaat
,
M.
, and
Abdelkefi
,
A.
,
2017
, “
Frequency and Mode Veering Phenomena of Axially Functionally Graded Non-Uniform Beams With Nonlocal Residuals
,”
Compos. Struct.
,
163
, pp.
280
292
.
9.
Hein
,
H.
, and
Feklistova
,
L.
,
2011
, “
Free Vibrations of Non-Uniform and Axially Functionally Graded Beams Using Haar Wavelets
,”
Eng. Struct.
,
33
(
12
), pp.
3696
3701
.
10.
Lee
,
J. W.
, and
Lee
,
J. Y.
,
2017
, “
Free Vibration Analysis of Functionally Graded Bernoulli-Euler Beams Using an Exact Transfer Matrix Expression
,”
Int. J. Mech. Sci.
,
122
, pp.
1
17
.
11.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2012
, “
Functionally Graded Material: An Overview
,” World Congress on Engineering III, London, July 4–6.
12.
Şimşek
,
M.
,
Kocatürk
,
T.
, and
Akbaş
,
Ş.
,
2012
, “
Dynamic Behavior of an Axially Functionally Graded Beam Under Action of a Moving Harmonic Load
,”
Compos. Struct.
,
94
(
8
), pp.
2358
2364
.
13.
Huang
,
Y.
, and
Li
,
X.-F.
,
2010
, “
A New Approach for Free Vibration of Axially Functionally Graded Beams With Non-Uniform Cross-Section
,”
J. Sound Vib.
,
329
(
11
), pp.
2291
2303
.
14.
Rajasekaran
,
S.
,
2013
, “
Differential Transformation and Differential Quadrature Methods for Centrifugally Stiffened Axially Functionally Graded Tapered Beams
,”
Int. J. Mech. Sci.
,
74
, pp.
15
31
.
15.
Kumar
,
S.
,
Mitra
,
A.
, and
Roy
,
H.
,
2015
, “
Geometrically Nonlinear Free Vibration Analysis of Axially Functionally Graded Taper Beams
,”
Eng. Sci. Technol., Int. J.
,
18
(
4
), pp.
579
593
.
16.
Nguyen
,
D. K.
,
2013
, “
Large Displacement Response of Tapered Cantilever Beams Made of Axially Functionally Graded Material
,”
Compos. Part B: Eng.
,
55
, pp.
298
305
.
17.
Farokhi, H., and Ghayesh, M. H., 2015, “
Thermo-Mechanical Dynamics of Perfect and Imperfect Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
91
, pp. 12–33.
18.
Sarkar
,
K.
, and
Ganguli
,
R.
,
2014
, “
Closed-Form Solutions for Axially Functionally Graded Timoshenko Beams Having Uniform Cross-Section and Fixed–Fixed Boundary Condition
,”
Compos. Part B: Eng.
,
58
, pp.
361
370
.
19.
Huang
,
Y.
,
Yang
,
L.-E.
, and
Luo
,
Q.-Z.
,
2013
, “
Free Vibration of Axially Functionally Graded Timoshenko Beams With Non-Uniform Cross-Section
,”
Compos. Part B: Eng.
,
45
(
1
), pp.
1493
1498
.
20.
Calim
,
F. F.
,
2016
, “
Free and Forced Vibration Analysis of Axially Functionally Graded Timoshenko Beams on Two-Parameter Viscoelastic Foundation
,”
Compos. Part B: Eng.
,
103
, pp.
98
112
.
21.
Shahba
,
A.
,
Attarnejad
,
R.
,
Marvi
,
M. T.
, and
Hajilar
,
S.
,
2011
, “
Free Vibration and Stability Analysis of Axially Functionally Graded Tapered Timoshenko Beams With Classical and Non-Classical Boundary Conditions
,”
Compos. Part B: Eng.
,
42
(
4
), pp.
801
808
.
22.
Deng
,
H.
,
Chen
,
K.
,
Cheng
,
W.
, and
Zhao
,
S.
,
2017
, “
Vibration and Buckling Analysis of Double-Functionally Graded Timoshenko Beam System on Winkler-Pasternak Elastic Foundation
,”
Compos. Struct.
,
160
, pp.
152
168
.
23.
Calim
,
F. F.
,
2016
, “
Transient Analysis of Axially Functionally Graded Timoshenko Beams With Variable Cross-Section
,”
Compos. Part B: Eng.
,
98
, pp.
472
483
.
24.
Ding
,
H.
,
Tan
,
X.
, and
Dowell
,
E. H.
,
2017
, “
Natural Frequencies of a Super-Critical Transporting Timoshenko Beam
,”
Eur. J. Mech.-A/Solids
,
66
(
Suppl. C
), pp.
79
93
.
25.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Three-Dimensional Nonlinear Size-Dependent Behaviour of Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
71
, pp.
1
14
.
26.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2018
, “
Supercritical Nonlinear Parametric Dynamics of Timoshenko Microbeams
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
592
605
.
27.
Farokhi
,
H.
,
Ghayesh
,
M. H.
,
Gholipour
,
A.
, and
Hussain
,
S. H.
,
2017
, “
Motion Characteristics of Bilayered Extensible Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
112
, pp.
1
17
.
28.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Amabili
,
M.
, 2013, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp. 11–23.
29.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
, 2013, “
Nonlinear Behaviour of Electrically Actuated Mems Resonators
,”
Int. J. Eng. Sci.
,
71
, pp. 137–155.
30.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
, 2015, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp. 133–144.
31.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
, 2016, “
Size-Dependent Performance of Microgyroscopes
,”
Int. J. Eng. Sci.
,
100
, pp. 99–111.
32.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
In-Plane and out-of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1771
1785
.
33.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Microscale Beam Based on the Modified Couple Stress Theory
,”
Compos. Part B: Eng.
,
50
, pp.
318
324
.
34.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Compos. Part B: Eng.
,
60
, pp.
423
439
.
You do not currently have access to this content.