This paper introduces a new planar gradient deficient beam element based on the absolute nodal coordinate formulation. In the proposed formulation, the centerline position is interpolated using cubic polynomials while shear deformation is taken into account via independently interpolated linear terms. The orientation of the cross section, which is defined by the axial slope of the element's centerline position combined with the independent shear terms, is coupled with the displacement field. A structural mechanics based formulation is used to describe the strain energy via generalized strains derived using a local element coordinate frame. The accuracy and the convergence properties of the proposed formulation are verified using numerical tests in both static and dynamics cases. The numerical results show good agreement with reference formulations in terms of accuracy and convergence.

References

1.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
, pp.
149
188
.
2.
Schiehlen
,
W.
,
1990
,
Multibody Systems Handbook
,
Springer Verlag
,
Berlin
.
3.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
Appl. Mech.
,
56
(
6
), pp.
553
613
.
4.
Nowakowski
,
C.
,
Fehr
,
J.
,
Fischer
,
M.
, and
Eberhard
,
P.
,
2012
, “
Model Order Reduction in Elastic Multibody Systems Using the Floating Frame of Reference Formulation
,”
IFAC Proc. Vol.
,
45
(
2
), pp.
40
48
.
5.
Baharudin
,
M. E.
,
Korkealaakso
,
P.
,
Rouvinen
,
A.
, and
Mikkola
,
A.
,
2012
, “
Crane Operators Training Based on the Real-Time Multibody Simulation
,”
Multibody System Dynamics, Robotics and Control
,
Springer
,
Vienna, Austria
, pp.
213
229
.
6.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.
7.
Nachbagauer
,
K.
,
2014
, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison With Proposed Beam Finite Elements
,”
Arch. Comput. Methods Eng.
,
21
(
3
), pp.
293
319
.
8.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
9.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2005
, “
Efficient Integration of the Elastic Forces and Thin Three-Dimensional Beam Elements in the Absolute Nodal Coordinate Formulation
,”
Multibody Dynamics 2005
,
ECCOMAS
Thematic Conference.
10.
Matikainen
,
M.
,
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2010
, “
Beam Elements With Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation
,”
International Conference of Numerical Analysis and Applied Mathematics
, pp.
19
25
.
11.
Mikkola
,
A.
,
Dmitrochenko
,
O.
, and
Matikainen
,
M.
,
2009
, “
Inclusion of Transverse Shear Deformation in a Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), pp.
1
9
.
12.
Gruber
,
P. G.
,
Nachbagauer
,
K.
,
Vetyukov
,
Y.
, and
Gerstmayr
,
J.
,
2013
, “
A Novel Director-Based Bernoulli-Euler Beam Finite Element in Absolute Nodal Coordinate Formulation Free of Geometric Singularities
,”
Mech. Sci.
,
4
(
2
), pp.
279
289
.
13.
Mikkola
,
A. M.
, and
Matikainen
,
M. K.
,
2005
, “
Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
103
108
.
14.
Nachbagauer
,
K.
,
Pechstein
,
A. S.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
245
263
.
15.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—Part I: The Plane Case
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
863
.
16.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—Part II: The Plane Case
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
863
.
17.
Reissner
,
E.
,
1972
, “
On One-Dimensional Finite-Strain Beam Theory: The Plane Problem
,”
Z. Angew. Math. Phys.
,
23
(
5
), pp.
795
804
.
18.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.
You do not currently have access to this content.