This paper introduces a new planar gradient deficient beam element based on the absolute nodal coordinate formulation. In the proposed formulation, the centerline position is interpolated using cubic polynomials while shear deformation is taken into account via independently interpolated linear terms. The orientation of the cross section, which is defined by the axial slope of the element's centerline position combined with the independent shear terms, is coupled with the displacement field. A structural mechanics based formulation is used to describe the strain energy via generalized strains derived using a local element coordinate frame. The accuracy and the convergence properties of the proposed formulation are verified using numerical tests in both static and dynamics cases. The numerical results show good agreement with reference formulations in terms of accuracy and convergence.
Skip Nav Destination
Article navigation
July 2017
Research-Article
A Planar Beam Finite-Element Formulation With Individually Interpolated Shear Deformation
Vesa-Ville T. Hurskainen,
Vesa-Ville T. Hurskainen
School of Energy Systems,
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: vesa-ville.hurskainen@lut.fi
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: vesa-ville.hurskainen@lut.fi
Search for other works by this author on:
Marko K. Matikainen,
Marko K. Matikainen
School of Energy Systems,
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: marko.matikainen@lut.fi
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: marko.matikainen@lut.fi
Search for other works by this author on:
Jia J. Wang,
Jia J. Wang
School of Mechatronic Engineering,
Harbin Institute of Technology,
Harbin 150001, China
e-mail: wangjia_hit@163.com
Harbin Institute of Technology,
Harbin 150001, China
e-mail: wangjia_hit@163.com
Search for other works by this author on:
Aki M. Mikkola
Aki M. Mikkola
School of Energy Systems,
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: aki.mikkola@lut.fi
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: aki.mikkola@lut.fi
Search for other works by this author on:
Vesa-Ville T. Hurskainen
School of Energy Systems,
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: vesa-ville.hurskainen@lut.fi
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: vesa-ville.hurskainen@lut.fi
Marko K. Matikainen
School of Energy Systems,
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: marko.matikainen@lut.fi
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: marko.matikainen@lut.fi
Jia J. Wang
School of Mechatronic Engineering,
Harbin Institute of Technology,
Harbin 150001, China
e-mail: wangjia_hit@163.com
Harbin Institute of Technology,
Harbin 150001, China
e-mail: wangjia_hit@163.com
Aki M. Mikkola
School of Energy Systems,
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: aki.mikkola@lut.fi
Lappeenranta University of Technology,
Skinnarilankatu 34,
Lappeenranta 53851, Finland
e-mail: aki.mikkola@lut.fi
Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received July 1, 2016; final manuscript received November 23, 2016; published online January 20, 2017. Assoc. Editor: José L. Escalona.
J. Comput. Nonlinear Dynam. Jul 2017, 12(4): 041007 (8 pages)
Published Online: January 20, 2017
Article history
Received:
July 1, 2016
Revised:
November 23, 2016
Citation
Hurskainen, V. T., Matikainen, M. K., Wang, J. J., and Mikkola, A. M. (January 20, 2017). "A Planar Beam Finite-Element Formulation With Individually Interpolated Shear Deformation." ASME. J. Comput. Nonlinear Dynam. July 2017; 12(4): 041007. https://doi.org/10.1115/1.4035413
Download citation file:
Get Email Alerts
Cited By
Numerical Simulation Method for the Rain-Wind Induced Vibration of the Three-Dimensional Flexible Stay Cable
J. Comput. Nonlinear Dynam
A Numerical Study for Nonlinear Time-Space Fractional Reaction-Diffusion Model of Fourth-Order
J. Comput. Nonlinear Dynam (March 2025)
An Investigation of Dynamic Behavior of Electric Vehicle Gear Trains
J. Comput. Nonlinear Dynam (March 2025)
Nonlinear Dynamic Analysis Framework for Slender Structures Using the Modal Rotation Method
J. Comput. Nonlinear Dynam (March 2025)
Related Articles
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
J. Mech. Des (December,2001)
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (January,2010)
A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation
J. Mech. Des (July,2005)
On Timoshenko Beams of Rectangular Cross-Section
J. Appl. Mech (May,2004)
Related Proceedings Papers
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Units and Dimensions
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Static Deformations Budget
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume II: Stiffness and Metrology