This paper describes the stabilization of a fractional-order nonlinear brushless DC motor (BLDCM) with the Caputo derivative. Based on the Laplace transform, a Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, sufficient conditions are proposed that ensure the local stabilization of a BLDCM as fractional-order : is proposed. Then, numerical simulations are presented to show the feasibility and validity of the designed method. The proposed scheme is simpler and easier to implement than previous schemes.
Issue Section:
Research Papers
References
1.
Wen
, X. J.
, Wu
, Z. M.
, and Lu
, J. G.
, 2008
, “Stability Analysis of a Class of Nonlinear Fractional-Order Systems
,” IEEE Trans. Circuits Syst. II-Express Briefs
, 55
(11
), pp. 1178
–1182
.2.
Wang
, J. R.
, and Zhou
, Y.
, 2012
, “Mittag-Leffler–Ulam Stabilities of Fractional Evolution Equations
,” Appl. Math. Lett.
, 25
(4
), pp. 723
–728
.3.
Bhrawy
, A. H.
, and Alofi
, A. S.
, 2013
, “The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials
,” Appl. Math. Lett.
, 26
(1
), pp. 25
–31
.4.
Huang
, S. H.
, Zhang
, R. F.
, and Chen
, D. Y.
, 2016
, “Stability of Nonlinear Fractional-Order Time Varying Systems
,” ASME J. Comput. Nonlinear Dyn.
, 11
(3
), p. 031007
.5.
Qian
, D. L.
, Li
, C. P.
, Agarwal
, R. P.
, and Wong
, P. J. Y.
, 2010
, “Stability Analysis of Fractional Differential System With Riemann–Liouville Derivative
,” Math. Comput. Modell.
, 52
(5–6
), pp. 862
–874
.6.
Podlubny
, I.
, 1999
, “Fractional-Order Systems and PI-Lambda-D-Mu-Controllers
,” IEEE Trans. Autom. Control
, 44
(1
), pp. 208
–214
.7.
Li
, H.
, and Haldane
, F. D. M.
, 2008
, “Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States
,” Phys. Rev. Lett.
, 101
(1
), p. 010504
.8.
Bhrawy
, A. H.
, and Al-Shomrani
, M. M.
, 2012
, “A Shifted Legendre Spectral Method for Fractional-Order Multi-Point Boundary Value Problems
,” Adv. Differ. Equations
, 2012
, p. 8
.9.
Bhrawy
, A. H.
, Baleanu
, D.
, and Assas
, L.
, 2014
, “Efficient Generalized Laguerre-Spectral Methods for Solving Multi-Term Fractional Differential Equations on the Half Line
,” J. Vib. Control
, 20
(7
), pp. 973
–985
.10.
Chen
, D. Y.
, Zhang
, R. F.
, Liu
, X. Z.
, and Ma
, X. Y.
, 2014
, “Fractional Order Lyapunov Stability Theorem and Its Applications in Synchronization of Complex Dynamical Networks
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(12
), pp. 4105
–4121
.11.
Yu
, J. M.
, Hu
, H.
, Zhou
, S. B.
, and Lin
, X. R.
, 2013
, “Generalized Mittag-Leffler Stability of Multi-Variables Fractional Order Nonlinear Systems
,” Automatica
, 49
(6
), pp. 1798
–1803
.12.
Xu
, Y.
, Li
, Y. G.
, and Liu
, D.
, 2014
, “Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation
,” ASME J. Comput. Nonlinear Dyn.
, 9
(3
), p. 031015
.13.
Sun
, H. H.
, Abdelwahad
, A. A.
, and Onaral
, B.
, 1984
, “Linear Approximation of Transfer Function With a Pole of Fractional Order
,” IEEE Trans. Autom. Control
, 29
(5
), pp. 441
–444
.14.
Bhrawy
, A. H.
, 2016
, “A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations
,” Numer. Algorithms
, 73
(1
), pp. 91
–113
.15.
Bhrawy
, A. H.
, 2016
, “A New Spectral Algorithm for Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion
,” Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci.
, 17
(1
), pp. 39
–47
.16.
Xin
, B. G.
, and Zhang
, J. Y.
, 2015
, “Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence
,” Nonlinear Dyn.
, 79
(2
), pp. 1399
–1409
.17.
Lazopoulos
, K. A.
, 2006
, “Non-Local Continuum Mechanics and Fractional Calculus
,” Mech. Res. Commun.
, 33
(6
), pp. 753
–757
.18.
Kusnezov
, D.
, Bulgac
, A.
, and Dang
, G. D.
, 1999
, “Quantum Levy Processes and Fractional Kinetics
,” Phys. Rev. Lett.
, 82
(6
), pp. 1136
–1139
.19.
Dumitru
, B.
, Richard
, L. M.
, Sachin
, B.
, and Varsha
, D. G.
, 2015
, “Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,” Commun. Nonlinear Sci. Numer. Simul.
, 25
(1–3
), pp. 41
–49
.20.
Kiani
, B. A.
, Fallahi
, K.
, Pariz
, N.
, and Leung
, H.
, 2009
, “A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter
,” Commun. Nonlinear Sci. Numer. Simul.
, 14
(3
), pp. 863
–879
.21.
Muthukumar
, P.
, Balasubramaniam
, P.
, and Ratnavelu
, K.
, 2014
, “Synchronization of a Novel Fractional Order Stretch-Twist-Fold (STF) Flow Chaotic System and Its Application to a New Authenticated Encryption Scheme (AES)
,” Nonlinear Dyn.
, 77
(4
), pp. 1547
–1559
.22.
Aghababa
, M.
, 2012
, “Finite-Time Chaos Control and Synchronization of Fractional-Order Chaotic (Hyperchaotic) Systems Using Fractional Nonsingular Terminal Sliding Mode Technique
,” Nonlinear Dyn.
, 69
(1–2
), pp. 247
–261
.23.
Wang
, B.
, Xue
, J. Y.
, Wu
, F. J.
, and Zhum
, D. L.
, 2016
, “Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Nonlinear Systems With Random Disturbances
,” IET Control Theory Appl.
, 10
(6
), pp. 637
–647
.24.
Balasubramaniam
, P.
, and Tamilalagan
, P.
, 2015
, “Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions With Infinite Delay by Using Mainardi's Function
,” Appl. Math. Comput.
, 256
, pp. 232
–246
.25.
Bhrawy
, A. H.
, and Zaky
, M. A.
, 2016
, “Shifted Fractional-Order Jacobi Orthogonal Functions: Application to a System of Fractional Differential Equations
,” Appl. Math. Modell.
, 40
(2
), pp. 832
–845
.26.
Hemati
, N.
, and Leu
, M. C.
, 1992
, “A Complete Model Characterization of Brushless DC Motors
,” IEEE Trans. Ind. Appl.
, 28
(1
), pp. 172
–180
.27.
Hemati
, N.
, 1994
, “Strange Attractors in Brushless DC Motors
,” IEEE Trans. Circuits Syst. I
, 41
(1
), pp. 40
–45
.28.
Ge
, Z. M.
, Chang
, C. M.
, and Chen
, Y. S.
, 2006
, “Anti-Control of Chaos Single Time Scale Brushless DC Motors and Chaos Synchronization of Different Order System
,” Chaos, Solitons Fractals
, 27
(5
), pp. 1298
–1315
.29.
Wei
, D. Q.
, Wan
, L.
, Luo
, X. S.
, Zeng
, S. Y.
, and Zhang
, B.
, 2014
, “Global Exponential Stabilization for Chaotic Brushless DC Motors With a Single Input
,” Nonlinear Dyn.
, 77
(1–2
), pp. 209
–212
.30.
Zhou
, P.
, Bai
, R. J.
, and Zheng
, J. M.
, 2015
, “Stabilization of a Fractional-Order Chaotic Brushless DC Motor Via a Single Input
,” Nonlinear Dyn.
, 82
(1–2
), pp. 519
–525
.31.
Ge
, Z. M.
, and Chang
, C. M.
, 2004
, “Chaos Synchronization and Parameters Identification of Single Time Scale Brushless DC Motors
,” Chaos, Solitons Fractals
, 20
(4
), pp. 883
–903
.32.
Liu
, G.
, Cui
, C. J.
, Wang
, K.
, Han
, B. C.
, and Zheng
, S. Q.
, 2016
, “Sensorless Control for High-Speed Brushless DC Motor Based on the Line-to-Line Back EMF
,” IEEE Trans. Power Electron.
, 31
(7
), pp. 4669
–4683
.33.
Wang
, W.
, Jin
, R. J.
, and Jiang
, J. P.
, 2007
, “Optimal State Feedback Control of Brushless Direct-Current Motor Drive Systems Based on Lyapunov Stability Criterion
,” J. Zhejiang Univ., Sci., A
, 8
(12
), pp. 1889
–1893
.34.
Zhang
, F. R.
, and Li
, C. P.
, 2011
, “Stability Analysis of Fractional Differential Systems With Order Lying in (1, 2)
,” Adv. Differ. Equations
, 2011
, p. 213485
.35.
Zhou
, P.
, Cai
, H.
, and Yang
, C. D.
, 2016
, “Stabilization of the Unstable Equilibrium Points of the Fractional-Order BLDCM Chaotic System in the Sense of Lyapunov by a Single-State Variable
,” Nonlinear Dyn.
, 84
(4
), pp. 2357
–2361
.36.
Zheng
, W. J.
, Luo
, Y.
, Chen
, Y. Q.
, and Pi
, Y. G.
, 2016
, “Fractional-Order Modeling of Permanent Magnet Synchronous Motor Speed Servo System
,” J. Vib. Control
, 22
(9
), pp. 2255
–2280
.37.
Xu
, B. B.
, Chen
, D. Y.
, Zhang
, H.
, and Wang
, F. F.
, 2015
, “Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System
,” Chaos, Solitons Fractals
, 75
, pp. 50
–61
.38.
Bao
, H. B.
, Park
, J. H.
, and Cao
, J. D.
, 2016
, “Synchronization of Fractional-Order Complex-Valued Neural Networks With Time Delay
,” Neural Networks
, 81
, pp. 16
–28
.39.
Hei
, X. D.
, and Wu
, R. C.
, 2016
, “Finite-Time Stability of Impulsive Fractional-Order Systems With Time-Delay
,” Appl. Math. Modell.
, 40
(7–8
), pp. 4285
–4290
.Copyright © 2017 by ASME
You do not currently have access to this content.