This paper describes the stabilization of a fractional-order nonlinear brushless DC motor (BLDCM) with the Caputo derivative. Based on the Laplace transform, a Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, sufficient conditions are proposed that ensure the local stabilization of a BLDCM as fractional-order α: 0<α1 is proposed. Then, numerical simulations are presented to show the feasibility and validity of the designed method. The proposed scheme is simpler and easier to implement than previous schemes.

References

1.
Wen
,
X. J.
,
Wu
,
Z. M.
, and
Lu
,
J. G.
,
2008
, “
Stability Analysis of a Class of Nonlinear Fractional-Order Systems
,”
IEEE Trans. Circuits Syst. II-Express Briefs
,
55
(
11
), pp.
1178
1182
.
2.
Wang
,
J. R.
, and
Zhou
,
Y.
,
2012
, “
Mittag-Leffler–Ulam Stabilities of Fractional Evolution Equations
,”
Appl. Math. Lett.
,
25
(
4
), pp.
723
728
.
3.
Bhrawy
,
A. H.
, and
Alofi
,
A. S.
,
2013
, “
The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials
,”
Appl. Math. Lett.
,
26
(
1
), pp.
25
31
.
4.
Huang
,
S. H.
,
Zhang
,
R. F.
, and
Chen
,
D. Y.
,
2016
, “
Stability of Nonlinear Fractional-Order Time Varying Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031007
.
5.
Qian
,
D. L.
,
Li
,
C. P.
,
Agarwal
,
R. P.
, and
Wong
,
P. J. Y.
,
2010
, “
Stability Analysis of Fractional Differential System With Riemann–Liouville Derivative
,”
Math. Comput. Modell.
,
52
(
5–6
), pp.
862
874
.
6.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PI-Lambda-D-Mu-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
7.
Li
,
H.
, and
Haldane
,
F. D. M.
,
2008
, “
Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States
,”
Phys. Rev. Lett.
,
101
(
1
), p.
010504
.
8.
Bhrawy
,
A. H.
, and
Al-Shomrani
,
M. M.
,
2012
, “
A Shifted Legendre Spectral Method for Fractional-Order Multi-Point Boundary Value Problems
,”
Adv. Differ. Equations
,
2012
, p.
8
.
9.
Bhrawy
,
A. H.
,
Baleanu
,
D.
, and
Assas
,
L.
,
2014
, “
Efficient Generalized Laguerre-Spectral Methods for Solving Multi-Term Fractional Differential Equations on the Half Line
,”
J. Vib. Control
,
20
(
7
), pp.
973
985
.
10.
Chen
,
D. Y.
,
Zhang
,
R. F.
,
Liu
,
X. Z.
, and
Ma
,
X. Y.
,
2014
, “
Fractional Order Lyapunov Stability Theorem and Its Applications in Synchronization of Complex Dynamical Networks
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
12
), pp.
4105
4121
.
11.
Yu
,
J. M.
,
Hu
,
H.
,
Zhou
,
S. B.
, and
Lin
,
X. R.
,
2013
, “
Generalized Mittag-Leffler Stability of Multi-Variables Fractional Order Nonlinear Systems
,”
Automatica
,
49
(
6
), pp.
1798
1803
.
12.
Xu
,
Y.
,
Li
,
Y. G.
, and
Liu
,
D.
,
2014
, “
Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031015
.
13.
Sun
,
H. H.
,
Abdelwahad
,
A. A.
, and
Onaral
,
B.
,
1984
, “
Linear Approximation of Transfer Function With a Pole of Fractional Order
,”
IEEE Trans. Autom. Control
,
29
(
5
), pp.
441
444
.
14.
Bhrawy
,
A. H.
,
2016
, “
A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations
,”
Numer. Algorithms
,
73
(
1
), pp.
91
113
.
15.
Bhrawy
,
A. H.
,
2016
, “
A New Spectral Algorithm for Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion
,”
Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci.
,
17
(
1
), pp.
39
47
.
16.
Xin
,
B. G.
, and
Zhang
,
J. Y.
,
2015
, “
Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1399
1409
.
17.
Lazopoulos
,
K. A.
,
2006
, “
Non-Local Continuum Mechanics and Fractional Calculus
,”
Mech. Res. Commun.
,
33
(
6
), pp.
753
757
.
18.
Kusnezov
,
D.
,
Bulgac
,
A.
, and
Dang
,
G. D.
,
1999
, “
Quantum Levy Processes and Fractional Kinetics
,”
Phys. Rev. Lett.
,
82
(
6
), pp.
1136
1139
.
19.
Dumitru
,
B.
,
Richard
,
L. M.
,
Sachin
,
B.
, and
Varsha
,
D. G.
,
2015
, “
Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
25
(
1–3
), pp.
41
49
.
20.
Kiani
,
B. A.
,
Fallahi
,
K.
,
Pariz
,
N.
, and
Leung
,
H.
,
2009
, “
A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
3
), pp.
863
879
.
21.
Muthukumar
,
P.
,
Balasubramaniam
,
P.
, and
Ratnavelu
,
K.
,
2014
, “
Synchronization of a Novel Fractional Order Stretch-Twist-Fold (STF) Flow Chaotic System and Its Application to a New Authenticated Encryption Scheme (AES)
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1547
1559
.
22.
Aghababa
,
M.
,
2012
, “
Finite-Time Chaos Control and Synchronization of Fractional-Order Chaotic (Hyperchaotic) Systems Using Fractional Nonsingular Terminal Sliding Mode Technique
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
247
261
.
23.
Wang
,
B.
,
Xue
,
J. Y.
,
Wu
,
F. J.
, and
Zhum
,
D. L.
,
2016
, “
Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Nonlinear Systems With Random Disturbances
,”
IET Control Theory Appl.
,
10
(
6
), pp.
637
647
.
24.
Balasubramaniam
,
P.
, and
Tamilalagan
,
P.
,
2015
, “
Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions With Infinite Delay by Using Mainardi's Function
,”
Appl. Math. Comput.
,
256
, pp.
232
246
.
25.
Bhrawy
,
A. H.
, and
Zaky
,
M. A.
,
2016
, “
Shifted Fractional-Order Jacobi Orthogonal Functions: Application to a System of Fractional Differential Equations
,”
Appl. Math. Modell.
,
40
(
2
), pp.
832
845
.
26.
Hemati
,
N.
, and
Leu
,
M. C.
,
1992
, “
A Complete Model Characterization of Brushless DC Motors
,”
IEEE Trans. Ind. Appl.
,
28
(
1
), pp.
172
180
.
27.
Hemati
,
N.
,
1994
, “
Strange Attractors in Brushless DC Motors
,”
IEEE Trans. Circuits Syst. I
,
41
(
1
), pp.
40
45
.
28.
Ge
,
Z. M.
,
Chang
,
C. M.
, and
Chen
,
Y. S.
,
2006
, “
Anti-Control of Chaos Single Time Scale Brushless DC Motors and Chaos Synchronization of Different Order System
,”
Chaos, Solitons Fractals
,
27
(
5
), pp.
1298
1315
.
29.
Wei
,
D. Q.
,
Wan
,
L.
,
Luo
,
X. S.
,
Zeng
,
S. Y.
, and
Zhang
,
B.
,
2014
, “
Global Exponential Stabilization for Chaotic Brushless DC Motors With a Single Input
,”
Nonlinear Dyn.
,
77
(
1–2
), pp.
209
212
.
30.
Zhou
,
P.
,
Bai
,
R. J.
, and
Zheng
,
J. M.
,
2015
, “
Stabilization of a Fractional-Order Chaotic Brushless DC Motor Via a Single Input
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
519
525
.
31.
Ge
,
Z. M.
, and
Chang
,
C. M.
,
2004
, “
Chaos Synchronization and Parameters Identification of Single Time Scale Brushless DC Motors
,”
Chaos, Solitons Fractals
,
20
(
4
), pp.
883
903
.
32.
Liu
,
G.
,
Cui
,
C. J.
,
Wang
,
K.
,
Han
,
B. C.
, and
Zheng
,
S. Q.
,
2016
, “
Sensorless Control for High-Speed Brushless DC Motor Based on the Line-to-Line Back EMF
,”
IEEE Trans. Power Electron.
,
31
(
7
), pp.
4669
4683
.
33.
Wang
,
W.
,
Jin
,
R. J.
, and
Jiang
,
J. P.
,
2007
, “
Optimal State Feedback Control of Brushless Direct-Current Motor Drive Systems Based on Lyapunov Stability Criterion
,”
J. Zhejiang Univ., Sci., A
,
8
(
12
), pp.
1889
1893
.
34.
Zhang
,
F. R.
, and
Li
,
C. P.
,
2011
, “
Stability Analysis of Fractional Differential Systems With Order Lying in (1, 2)
,”
Adv. Differ. Equations
,
2011
, p.
213485
.
35.
Zhou
,
P.
,
Cai
,
H.
, and
Yang
,
C. D.
,
2016
, “
Stabilization of the Unstable Equilibrium Points of the Fractional-Order BLDCM Chaotic System in the Sense of Lyapunov by a Single-State Variable
,”
Nonlinear Dyn.
,
84
(
4
), pp.
2357
2361
.
36.
Zheng
,
W. J.
,
Luo
,
Y.
,
Chen
,
Y. Q.
, and
Pi
,
Y. G.
,
2016
, “
Fractional-Order Modeling of Permanent Magnet Synchronous Motor Speed Servo System
,”
J. Vib. Control
,
22
(
9
), pp.
2255
2280
.
37.
Xu
,
B. B.
,
Chen
,
D. Y.
,
Zhang
,
H.
, and
Wang
,
F. F.
,
2015
, “
Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System
,”
Chaos, Solitons Fractals
,
75
, pp.
50
61
.
38.
Bao
,
H. B.
,
Park
,
J. H.
, and
Cao
,
J. D.
,
2016
, “
Synchronization of Fractional-Order Complex-Valued Neural Networks With Time Delay
,”
Neural Networks
,
81
, pp.
16
28
.
39.
Hei
,
X. D.
, and
Wu
,
R. C.
,
2016
, “
Finite-Time Stability of Impulsive Fractional-Order Systems With Time-Delay
,”
Appl. Math. Modell.
,
40
(
7–8
), pp.
4285
4290
.
You do not currently have access to this content.