The nonlinear dynamic response of nanocomposite microcantilevers is investigated. The microbeams are made of a polymeric hosting matrix (e.g., epoxy, polyether ether ketone (PEEK), and polycarbonate) reinforced by longitudinally aligned carbon nanotubes (CNTs). The 3D transversely isotropic elastic constitutive equations for the nanocomposite material are based on the equivalent inclusion theory of Eshelby and the Mori–Tanaka homogenization approach. The beam-generalized stress resultants, obtained in accordance with the Saint-Venant principle, are expressed in terms of the generalized strains making use of the equivalent constitutive laws. These equations depend on both the hosting matrix and CNTs elastic properties as well as on the CNTs volume fraction, geometry, and orientation. The description of the geometry of deformation and the balance equations for the microbeams are based on the geometrically exact Euler–Bernoulli beam theory specialized to incorporate the additional inextensibility constraint due to the relevant boundary conditions of microcantilevers. The obtained equations of motion are discretized via the Galerkin method retaining an arbitrary number of eigenfunctions. A path following algorithm is then employed to obtain the nonlinear frequency response for different excitation levels and for increasing volume fractions of carbon nanotubes. The fold lines delimiting the multistability regions of the frequency responses are also discussed. The volume fraction is shown to play a key role in shifting the linear frequencies of the beam flexural modes to higher values. The CNT volume fraction further shifts the fold lines to higher excitation amplitudes, while it does not affect the backbones of the modes (i.e., oscillation frequency–amplitude curves).

References

1.
Zhou
,
X.
,
Che
,
L.
,
Liang
,
S.
,
Lin
,
Y.
,
Li
,
X.
, and
Wang
,
Y.
,
2015
, “
Design and Fabrication of a MEMS Capacitive Accelerometer With Fully Symmetrical Double-Sided H-Shaped Beam Structure
,”
Microelectron. Eng.
,
131
, pp.
51
57
.
2.
Yu
,
F.
,
Yu
,
H.
,
Xu
,
P.
, and
Li
,
X.
,
2014
, “
Precise Extension-Mode Resonant Sensor With Uniform and Repeatable Sensitivity for Detection of PPM-Level Ammonia
,”
J. Micromech. Microeng.
,
24
(
4
), p.
045005
.
3.
Dorsey
,
K.
,
Bedair
,
S.
, and
Fedder
,
G.
,
2014
, “
Gas Chemical Sensitivity of a CMOS MEMS Cantilever Functionalized Via Evaporation Driven Assembly
,”
J. Micromech. Microeng.
,
24
(
7
), p.
075001
.
4.
Faegh
,
S.
,
Jalili
,
N.
, and
Sridhar
,
S.
,
2015
, “
Ultrasensitive Piezoelectric-Based Microcantilever Biosensor: Theory and Experiment
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
308
312
.
5.
Khushalani
,
D. G.
,
Dubey
,
V. R.
,
Bheley
,
P. P.
,
Kalambe
,
J. P.
,
Pande
,
R. S.
, and
Patrikar
,
R. M.
,
2015
, “
Design Optimization & Fabrication of Micro Cantilever for Switching Application
,”
Sens. Actuators A
,
225
, pp.
1
7
.
6.
Pal
,
J.
,
Zhu
,
Y.
,
Lu
,
J.
,
Dao
,
D. V.
, and
Khan
,
F.
,
2014
, “
RF MEMS Switches for Smart Antennas
,”
Microsyst. Technol.
,
21
(
2
), pp.
487
495
.
7.
Zheng
,
Y.
,
Song
,
L.
,
Hu
,
G.
,
Cai
,
X.
,
Liu
,
H.
,
Ma
,
J.
,
Zhao
,
M.
, and
Fang
,
F.
,
2015
, “
The Multi-Position Calibration of the Stiffness for Atomic-Force Microscope Cantilevers Based on Vibration
,”
Meas. Sci. Technol.
,
26
(
5
), p.
055001
.
8.
Kazantsev
,
D.
, and
Kazantzeva
,
E.
,
2014
, “
A Four-Segment Photodiode Cantilever-Bending Sensor for an Atomic-Force Microscope
,”
Instrum. Exp. Tech.
,
57
(
5
), pp.
631
639
.
9.
Islam
,
M.
,
Ali
,
M.
,
Alauddin
,
M.
,
Majlis
,
B. Y.
, et al.,
2010
, “
RF Mems Tunable Filter Using Micro Fixed–Fixed Beam
,”
Microwave Opt. Technol. Lett.
,
52
(
3
), pp.
592
597
.
10.
Rega
,
G.
, and
Settimi
,
V.
,
2013
, “
Bifurcation, Response Scenarios and Dynamic Integrity in a Single-Mode Model of Noncontact Atomic Force Microscopy
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
101
123
.
11.
Settimi
,
V.
,
Gottlieb
,
O.
, and
Rega
,
G.
,
2015
, “
Asymptotic Analysis of a Noncontact AFM Microcantilever Sensor With External Feedback Control
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2675
2698
.
12.
Crespo da Silva
,
M.
, and
Glynn
,
C.
,
1978
, “
Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams—Part-I: Equations of Motion
,”
J. Struct. Mech.
,
6
(
4
), pp.
437
448
.
13.
Batra
,
R.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Vibrations of Narrow Microbeams Predeformed by an Electric Field
,”
J. Sound Vib.
,
309
(
3
), pp.
600
612
.
14.
Zhao
,
J.
,
Zhou
,
S.
,
Wang
,
B.
, and
Wang
,
X.
,
2012
, “
Nonlinear Microbeam Model Based on Strain Gradient Theory
,”
Appl. Math. Model.
,
36
(
6
), pp.
2674
2686
.
15.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2009
, “
Static and Dynamic Analysis of Micro Beams Based on Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
487
498
.
16.
Miandoab
,
E. M.
,
Yousefi-Koma
,
A.
, and
Pishkenari
,
H. N.
,
2014
, “
Nonlocal and Strain Gradient Based Model for Electrostatically Actuated Silicon Nano-Beams
,”
Microsyst. Technol.
,
21
(
2
), pp.
457
464
.
17.
Formica
,
G.
,
Lacarbonara
,
W.
, and
Alessi
,
R.
,
2010
, “
Vibrations of Carbon Nanotube-Reinforced Composites
,”
J. Sound Vib.
,
329
(
10
), pp.
1875
1889
.
18.
Formica
,
G.
, and
Lacarbonara
,
W.
,
2013
, “
Damage Model of Carbon Nanotubes Debonding in Nanocomposites
,”
Compos. Struct.
,
96
, pp.
514
525
.
19.
Formica
,
G.
,
Talò
,
M.
, and
Lacarbonara
,
W.
,
2014
, “
Nonlinear Modeling of Carbon Nanotube Composites Dissipation Due to Interfacial Stick–Slip
,”
Int. J. Plast.
,
53
, pp.
148
163
.
20.
Yas
,
M.
, and
Heshmati
,
M.
,
2012
, “
Dynamic Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotube Under the Action of Moving Load
,”
Appl. Math. Model.
,
36
(
4
), pp.
1371
1394
.
21.
Omidi
,
M.
,
Rokni
,
D. T. H.
,
Milani
,
A. S.
,
Seethaler
,
R. J.
, and
Arasteh
,
R.
,
2010
, “
Prediction of the Mechanical Characteristics of Multi-Walled Carbon Nanotube/Epoxy Composites Using a New Form of the Rule of Mixtures
,”
Carbon
,
48
(
11
), pp.
3218
3228
.
22.
Rokni
,
H.
,
Milani
,
A. S.
, and
Seethaler
,
R. J.
,
2015
, “
Size-Dependent Vibration Behavior of Functionally Graded CNT-Reinforced Polymer Microcantilevers: Modeling and Optimization
,”
Eur. J. Mech.-A/Solids
,
49
, pp.
26
34
.
23.
Younis
,
M.
, and
Nayfeh
,
A.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.
24.
Saghafi
,
M.
,
Dankowicz
,
H.
, and
Lacarbonara
,
W.
,
2015
, “
Nonlinear Tuning of Microresonators for Dynamic Range Enhancement
,”
Proc. Royal Soc. London A
,
471
(
2179
), p.
20140969
.
25.
Formica
,
G.
,
Arena
,
A.
,
Lacarbonara
,
W.
, and
Dankowicz
,
H.
,
2013
, “
Coupling FEM With Parameter Continuation for Analysis of Bifurcations of Periodic Responses in Nonlinear Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021013
.
26.
Li
,
H.
, and
Balachandran
,
B.
,
2006
, “
Buckling and Free Oscillations of Composite Microresonators
,”
J. Microelectromech. Syst.
,
15
(
1
), pp.
42
51
.
27.
Li
,
H.
,
Preidikman
,
S.
,
Balachandran
,
B.
, and
Mote
,
C.
, Jr.
,
2006
, “
Nonlinear Free and Forced Oscillations of Piezoelectric Microresonators
,”
J. Micromech. Microeng.
,
16
(
2
), p.
356
.
28.
Lacarbonara
,
W.
, and
Camillacci
,
R.
,
2004
, “
Nonlinear Normal Modes of Structural Systems Via Asymptotic Approach
,”
Int. J. Solids Struct.
,
41
(
20
), pp.
5565
5594
.
29.
Lacarbonara
,
W.
, and
Yabuno
,
H.
,
2006
, “
Refined Models of Elastic Beams Undergoing Large Inplane Motions: Theory and Experiment
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5066
5084
.
30.
Kacem
,
N.
,
Arcamone
,
J.
,
Perez-Murano
,
F.
, and
Hentz
,
S.
,
2010
, “
Dynamic Range Enhancement of Nonlinear Nanomechanical Resonant Cantilevers for Highly Sensitive NEMS Gas/Mass Sensor Applications
,”
J. Micromech. Microeng.
,
20
(
4
), p.
045023
.
31.
Kozinsky
,
I.
,
Postma
,
H. C.
,
Bargatin
,
I.
, and
Roukes
,
M.
,
2006
, “
Tuning Nonlinearity, Dynamic Range, and Frequency of Nanomechanical Resonators
,”
Appl. Phys. Lett.
,
88
(
25
), p.
253101
.
32.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials
,”
Mech. Mater.
,
6
(
2
), pp.
147
157
.
33.
Lacarbonara
,
W.
,
2013
,
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling
,
Springer Science & Business Media
, New York.
34.
Touzé
,
C.
, and
Thomas
,
O.
,
2004
. “
Reduced-Order Modeling for a Cantilever Beam Subjected to Harmonic Forcing
,”
EUROMECH
Colloquium, Vol.
457
, pp.
165
168
.https://hal-ensta.archives-ouvertes.fr/hal-01154710/
35.
Villanueva
,
L.
,
Karabalin
,
R.
,
Matheny
,
M.
,
Chi
,
D.
,
Sader
,
J.
, and
Roukes
,
M.
,
2013
, “
Nonlinearity in Nanomechanical Cantilevers
,”
Phys. Rev. B
,
87
(
2
), p.
024304
.
You do not currently have access to this content.