The location of the hip-joint (H-Point) of a seat occupant is an important design specification which directly affects the seat static comfort. Most car seats are made of polyurethane foam and so the location of the H-Point is dependent on the quasi-static behavior of foam. In this research, a previously developed model of the seat–occupant system is refined by incorporating an improved foam model which is used to study seat and occupant interactions and the location of occupant’s H-Point. The seat is represented by a series of discrete nonlinear viscoelastic elements that characterize the seating foam behavior. The nonlinear elastic behavior of these elements is expressed by a higher order polynomial while their viscoelastic behavior is described by a hereditary type model with parameters that are functions of the compression rate. The nonlinear elastic and viscoelastic model parameters were estimated previously using data obtained from a series of quasi-static compression tests on a car seat foam sample. The occupant behavior is described by a constrained two-dimensional multibody model with five degrees of freedom. A Lagrangian formulation is used to derive the governing equations for the seat–occupant model. These differential equations are solved numerically to obtain the H-Point location. These results are then used to calculate the force distribution at the seat and occupant interfaces. The force distribution at the seat–occupant interface is also investigated experimentally and is found to match qualitatively with the results obtained using the seat–occupant model.

References

1.
Ebe
,
K.
, and
Griffin
,
M. J.
,
2001
, “
Factors Affecting Static Seat Cushion Comfort
,”
Ergonomics
,
44
(
10
), pp.
901
921
.10.1080/00140130110064685
2.
Ebe
,
K.
, and
Griffin
,
M. J.
,
2000
, “
Qualitative Models of Seat Discomfort Including Static and Dynamic Factors
,”
Ergonomics
,
43
(
6
), pp.
771
790
.10.1080/001401300404742
3.
White
,
S. W.
,
Kim
,
S. K.
,
Bajaj
,
A. K.
,
Davies
,
P.
,
Showers
,
D. K.
, and
Liedtke
,
P. E.
,
2000
, “
Experimental Techniques and Identification of Nonlinear and Viscoelastic Properties of Flexible Polyurethane Foam
,”
Nonlinear Dyn.
,
22
(
3
), pp.
281
313
.10.1023/A:1008302208269
4.
Casati
,
F. M.
,
Herrington
,
R. M.
,
Broos
,
R.
, and
Miyazaki
,
Y.
,
1998
, “
Tailoring the Performance of Molded Flexible Polyurethane Foams for Car Seats
,”
J. Cell. Plast.
,
34
(
5
), pp.
430
466
.
5.
Ebe
,
K.
, and
Griffin
,
M. J.
,
2000
, “
Quantitative Prediction of Overall Seat Discomfort
,”
Ergonomics
,
43
(
6
), pp.
791
806
.10.1080/001401300404751
6.
Wei
,
L.
, and
Griffin
,
M. J.
,
1998
, “
Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration
,”
J. Sound Vib.
,
212
(
5
), pp.
855
874
.10.1006/jsvi.1997.1473
7.
Qassem
,
W.
,
Othman
,
M. O.
, and
Abdul-Majeed
,
S.
,
1994
, “
The Effects of Vertical and Horizontal Vibrations on the Human Body
,”
Med. Eng. Phys.
,
16
(
2
), pp.
151
161
.10.1016/1350-4533(94)90028-0
8.
Griffin
,
M. J.
,
2012
,
Handbook of Human Vibration
,
Academic, San Diego
,
CA
.
9.
Rakheja
,
S.
,
Stiharu
,
I.
,
Zhang
,
H.
, and
Boileau
,
P.
,
2006
, “
Seated Occupant Interactions With Seat Backrest and Pan, and Biodynamic Responses Under Vertical Vibration
,”
J. Sound Vib.
,
298
(
3
), pp.
651
671
.10.1016/j.jsv.2006.06.025
10.
Joshi
,
G
.,
2010
, “
Planar Whole-Body Vibratory Response of a Nonlinear Multi-Body Model of a Seat–Occupant System With Polyurethane Foam
,” M.S. thesis,
Purdue University
,
West Lafayette, IN
.
11.
Stein
,
G. J.
,
Mucka
,
P.
,
Chmurnu
,
R.
,
Hinz
,
B.
, and
Bluthner
,
R.
,
2007
, “
Measurement and Modelling of x-Direction Apparent Mass of the Seated Human Seat System
,”
J. Biomech.
,
40
(
2
), pp.
1493
1503
.10.1016/j.jbiomech.2006.06.012
12.
Kumbhar
,
P. B.
,
Xu
,
P.
, and
Yang
,
J.
,
2012
, “
A Literature Survey of Biodynamic Models for Whole Body Vibration and Vehicle Ride Comfort
,”
ASME
Paper No. DETC2012-71061.10.1115/DETC2012-71061
13.
Siefert
,
A.
,
Pankoke
,
S.
, and
Wölfel
,
H. P.
,
2008
, “
Virtual Optimisation of Car Passenger Seats: Simulation of Static and Dynamic Effects on Drivers’ Seating Comfort
,”
Int. J. Ind. Ergon.
,
38
(
5
), pp.
410
424
.10.1016/j.ergon.2007.08.016
14.
Setyabudhy
,
R. H.
,
Ali
,
A.
,
Hubbard
,
R. P.
,
Beckett
,
C.
, and
Averill
,
R. C.
,
1997
, “
Measuring and Modeling of Human Soft Tissue and Seat Interaction
,”
SAE Trans.
,
106
(
6
), pp.
1058
1065
.
15.
Matsumoto
,
Y.
, and
Griffin
,
M. J.
,
2001
, “
Modeling the Dynamic Mechanisms Associated With the Principal Resonance of the Seated Human Body
,”
Clin. Biomech.
,
16
(
1
), pp.
31
44
.10.1016/S0268-0033(00)00099-1
16.
Cho
,
Y.
, and
Yoon
,
Y. S.
,
2001
, “
Biomechanical Model of Human on Seat With Backrest for Evaluating Ride Quality
,”
Int. J. Ind. Ergon.
,
27
(
5
), pp.
331
345
.10.1016/S0169-8141(00)00061-5
17.
Yoshimura
,
T.
,
Nakai
,
K.
, and
Tamaoki
,
G.
,
2005
, “
Multi-Body Dynamics Modelling of Seated Human Body Under Exposure to Whole-Body Vibration
,”
Ind. Health
,
43
(
3
), pp.
441
447
.10.2486/indhealth.43.441
18.
Ippili
,
R. K.
,
Davies
,
P.
,
Bajaj
,
A. K.
, and
Hagenmeyer
,
L.
,
2008
, “
Nonlinear Multi-Body Dynamic Modeling of Seat–Occupant System With Polyurethane Seat and h-Point Prediction
,”
Int. J. Ind. Ergon.
,
38
(
5
), pp.
368
383
.10.1016/j.ergon.2007.08.014
19.
Kim
,
S. K.
,
White
,
S. W.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2003
, “
Simplified Models of the Vibration of Mannequins in Car Seats
,”
J. Sound Vib.
,
264
(
1
), pp.
49
90
.10.1016/S0022-460X(02)01164-1
20.
Puri
,
T
.,
2004
, “
Seat–Occupant Modeling and Experiment Verification for H-Point Prediction in All-Foam Seats
,” M.S. thesis,
Purdue University
,
West Lafayette, IN
.
21.
Azizi
,
Y.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2013
, “
Predicting the Response of a Seat–Occupant Model by Using Incremental Harmonic Balance
,”
SAE 2013 World Congress and Exhibition
, Apr. 16–18, Detroit, MI,
SAE Technical Paper No. 2013-01-1190
.10.4271/2013-01-1190
22.
Azizi
,
Y.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2014
, “
Prediction and Verification of the Periodic Response of a Single-Degree-of-Freedom Foam-Mass System by Using Incremental Harmonic Balance
,”
Int. J. Nonlinear Dyn.
(submitted).
23.
Azizi
,
Y.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2014
, “
Identification of Nonlinear Viscoelastic Models of Flexible Polyurethane Foam From Uniaxial Compression Data
,”
ASME J. Mater. Sci. Technol.
(submitted).
24.
Azizi
,
Y.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2012
, “
Identification of Nonlinear Viscoelastic Models of Flexible Polyurethane Foam From Uniaxial Compression Data
,”
ASME
Paper No. IMECE2012-88190.10.1115/IMECE2012-88190
25.
Deng
,
R
.,
2004
, “
Modeling and Characterization of Flexible Polyurethane Foam
,” Ph.D. thesis,
Purdue University
,
West Lafayette, IN
.
26.
Amirouche
,
F. M. L.
,
1992
,
Computational Methods in Multibody Dynamics
,
Prentice Hall, Englewood Cliffs
,
NJ
.
27.
Amirouche
,
F. M. L.
, and
Ider
,
S. K.
,
1988
, “
Simulation and Analysis of a Biodynamic Human Model Subjected to Low Accelerations—A Correlation Study
,”
J. Sound Vib.
,
123
(
2
), pp.
281
292
.10.1016/S0022-460X(88)80111-1
You do not currently have access to this content.