Abstract

In this paper, periodic motion in an oscillator moving on a periodically oscillating belt with dry friction is investigated. The conditions of stick and nonstick motions for such an oscillator are obtained in the relative motion frame, and the grazing and stick (or sliding) bifurcations are presented as well. The periodic motions are predicted analytically and numerically, and the analytical prediction is based on the appropriate mapping structures. The eigenvalue analysis of such periodic motions is carried out. The periodic motions are illustrated through the displacement, velocity, and force responses in the absolute and relative frames. This investigation provides an efficient method to predict periodic motions of such an oscillator involving dry friction. The significance of this investigation lies in controlling motion of such a friction-induced oscillator in industry.

1.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-Smooth Dynamical Systems on Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
1
55
.
2.
Filippov
,
A. F.
, 1964, “
Differential Equations With Discontinuous Right-Hand Side
,”
Am. Math. Soc. Transl.
0065-9290, Series 2,
42
, pp.
199
231
.
3.
Filippov
,
A. F.
, 1988,
Differential Equations with Discontinuous Righthand Sides
,
Kluwer
, Dordrecht.
4.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2005, “
On the Mechanism of Stick and Non-Stick Periodic Motion in a Forced Oscillator Including Dry-Friction
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
97
105
.
5.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2005, “
Grazing Phenomena in a Periodically Forced, Friction-Induced, Linear Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
(in press).
6.
Den Hartog
,
J. P.
, 1931, “
Forced Vibrations with Coulomb and Viscous Damping
,”
Trans. ASME
0097-6822,
53
, pp.
107
115
.
7.
Levitan
,
E. S.
, 1960, “
Forced Oscillation of a Spring-Mass System Having Combined Coulomb and Viscous Damping
,”
J. Acoust. Soc. Am.
0001-4966,
32
, pp.
1265
1269
.
8.
Hundal
,
M. S.
, 1979, “
Response of a Base Excited System with Coulomb and Viscous Friction
,”
J. Sound Vib.
0022-460X,
64
, pp.
371
378
.
9.
Shaw
,
S. W.
, 1986, “
On the Dynamic Response of a System with Dry-Friction
,”
J. Sound Vib.
0022-460X,
108
, pp.
305
325
.
10.
Feeny
,
B. F
, and
Moon
,
F. C.
, 1994, “
Chaos in a Forced Dry-Friction Oscillator: Experiments and Numerical Modeling
,”
J. Sound Vib.
0022-460X,
170
, pp.
303
323
.
11.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
, 1997, “
Dynamics of Oscillators with Impact and Friction
,”
Chaos, Solitons Fractals
0960-0779,
8
(
4
), pp.
535
558
.
12.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
, 1998, “
On the Modeling of Friction Oscillators
,”
J. Sound Vib.
0022-460X,
216
(
3
), pp.
435
459
.
13.
Natsiavas
,
S.
, 1998, “
Stability of Piecewise Linear Oscillators with Viscous and Dry Friction Damping
,”
J. Sound Vib.
0022-460X,
217
, pp.
507
522
.
14.
Leine
,
R. I.
,
Van Campen
,
D. H.
,
De Kraker
,
A.
, and
Van Den Steen
,
L.
, 1998, “
Stick-Slip Vibrations Induced by Alternate Friction Models
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
41
54
.
15.
Virgin
,
L. N.
, and
Begley
,
C. J.
, 1999, “
Grazing Bifurcation and Basins of Attraction in an Impact-Friction Oscillator
,”
Physica D
0167-2789,
130
, pp.
43
57
.
16.
Ko
,
P. L.
,
Taponat
,
M.-C.
, and
Pfaifer
,
R.
, 2001, “
Friction-Induced Vibration-With and Without External Disturbance
,”
Tribol. Int.
0301-679X,
34
, pp.
7
24
.
17.
Andreaus
,
U.
, and
Casini
,
P.
, 2002, “
Friction Oscillator Excited by Moving Base and Colliding With a Rigid or Deformable Obstacle
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
117
133
.
18.
Thomsen
,
J. J.
, and
Fidlin
,
A.
, 2003, “
Analytical Approximations for Stick-Slip Vibration Amplitudes
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
389
403
.
19.
Kim
,
W. J.
, and
Perkins
,
N. C.
, 2003, “
Harmonic Balance/Galerkin Method for Non-Smooth Dynamical System
,”
J. Sound Vib.
0022-460X,
261
, pp.
213
224
.
20.
Utkin
,
V. I.
, 1981,
Sliding Regimes in Optimization and Control Problems
,
Nauka
, Moscow.
21.
Aubin
,
J.-P.
, and
Cellina
,
A.
, 1984,
Differential Inclusions: Set-Valued Maps and Viability Theory
,
Springer-Verlag
, Berlin.
22.
Luo
,
A. C. J.
, 2004, “
Imaginary, Sink and Source Flows in the Vicinity of the Separatrix of Non-Smooth Dynamic System
,”
J. Sound Vib.
0022-460X,
285
(
1–2
), pp.
443
456
.
23.
Luo
,
A. C. J.
, and
Zwiegart
, Jr,
P.
, 2005, “
Existence and Analytical Predictions of Periodic Motions in a Periodically Forced, Nonlinear Friction Oscillator, Journal of Sound and Vibration
” (in revision).
24.
Luo
,
A. C. J.
, and
Zwiegant
,
P.
, Jr.
, 2005, “
Analytical Dynamics of a Piecewise Linear Friction Oscillator Under a Periodic Excitation
,” Proc. ASME IMECE, ASME, New York, ASME Paper No. IMECE2005-80108.
25.
Luo
,
A. C. J.
, 2006,
Singularity and Dynamics on Discontinuous Vector Fields
,
Amsterdam
, Elsevier.
You do not currently have access to this content.