Abstract

Subject-specific computational modeling of vocal fold (VF) vibration was integrated with an ex vivo animal experiment of type 1 thyroplasty to study the effect of the implant on the vocal fold vibration. In the experiment, a rabbit larynx was used to simulate type 1 thyroplasty, where one side of the vocal fold was medialized with a trans-muscular suture while the other side was medialized with a silastic implant. Vocal fold vibration was then achieved by flowing air through the larynx and was filmed with a high-speed camera. The three-dimensional computational model was built upon the pre-operative scan of the laryngeal anatomy. This subject-specific model was used to simulate the vocal fold medialization and then the fluid-structure interaction (FSI) of the vocal fold. Model validation was done by comparing the vocal fold displacement with postoperative scan (for medialization), and by comparing the vibratory characteristics with the high-speed images (for vibration). These comparisons showed the computational model successfully captured the effect of the implant and thus has the potential for presurgical planning.

References

1.
Saran
,
M.
,
Georgakopoulos
,
B.
, and
Bordoni
,
B.
,
2022
, “
Anatomy, Head and Neck, Larynx Vocal Cords
,”
StatPearls [Internet]
,
StatPearls Publishing
,
Treasure Island, FL
.https://www.ncbi.nlm.nih.gov/books/NBK535342/
2.
Ruben
,
R. J.
,
2000
, “
Redefining the Survival of the Fittest: Communication Disorders in the 21st Century
,”
Laryngoscope
,
110
(
2
), pp.
241
241
.10.1097/00005537-200002010-00010
3.
Wilson
,
A.
,
Kimball
,
E. E.
,
Sayce
,
L.
,
Luo
,
H.
,
Khosla
,
S. M.
, and
Rousseau
,
B.
,
2021
, “
Medialization Laryngoplasty: A Review for Speech-Language Pathologists
,”
J. Speech, Language, Hear. Res.
,
64
(
2
), pp.
481
490
.10.1044/2020_JSLHR-20-00344
4.
Kelchner
,
L. N.
,
Stemple
,
J. C.
,
Gerdeman
,
B.
,
Le Borgne
,
W.
, and
Adam
,
S.
,
1999
, “
Etiology, Pathophysiology, Treatment Choices, and Voice Results for Unilateral Adductor Vocal Fold Paralysis: A 3-Year Retrospective
,”
J. Voice
,
13
(
4
), pp.
592
601
.10.1016/S0892-1997(99)80013-7
5.
Paniello
,
R. C.
,
Edgar
,
J. D.
,
Kallogjeri
,
D.
, and
Piccirillo
,
J. F.
,
2011
, “
Medialization Versus Reinnervation for Unilateral Vocal Fold Paralysis: A Multicenter Randomized Clinical Trial
,”
Laryngoscope
,
121
(
10
), pp.
2172
2179
.10.1002/lary.21754
6.
Francis
,
D. O.
,
McKiever
,
M. E.
,
Garrett
,
C. G.
,
Jacobson
,
B.
, and
Penson
,
D. F.
,
2014
, “
Assessment of Patient Experience With Unilateral Vocal Fold Immobility: A Preliminary Study
,”
J. Voice
,
28
(
5
), pp.
636
643
.10.1016/j.jvoice.2014.01.006
7.
Benninger
,
M. S.
,
Gillen
,
J. B.
, and
Altaian
,
J. S.
,
1998
, “
Changing Etiology of Vocal Fold Immobility
,”
Laryngoscope
,
108
(
9
), pp.
1346
1350
.10.1097/00005537-199809000-00016
8.
Misono
,
S.
, and
Merati
,
A. L.
,
2012
, “
Evidence-Based Practice: Evaluation and Management of Unilateral Vocal Fold Paralysis
,”
Otolaryngol. Clin. North Am.
,
45
(
5
), pp.
1083
1108
.10.1016/j.otc.2012.06.011
9.
Leder
,
S. B.
,
Suiter
,
D. M.
,
Duffey
,
D.
, and
Judson
,
B. L.
,
2012
, “
Vocal Fold Immobility and Aspiration Status: A Direct Replication Study
,”
Dysphagia
,
27
(
2
), pp.
265
270
.10.1007/s00455-011-9362-0
10.
Siu
,
J.
,
Tam
,
S.
, and
Fung
,
K.
,
2016
, “
A Comparison of Outcomes in Interventions for Unilateral Vocal Fold Paralysis: A Systematic Review
,”
Laryngoscope
,
126
(
7
), pp.
1616
1624
.10.1002/lary.25739
11.
Isshiki
,
N.
,
Okamura
,
H.
, and
Ishikawa
,
T.
,
1975
, “
Thyroplasty Type I (Lateral Compression) for Dysphonia Due to Vocal Cord Paralysis or Atrophy
,”
Acta Oto-Laryngol.
,
80
(
1–6
), pp.
465
473
.10.3109/00016487509121353
12.
Koufman
,
J. A.
,
1986
, “
Laryngoplasty for Vocal Cord Medialization: An Alternative to Teflon®
,”
Laryngoscope
,
96
(
7
), pp.
726
731
.10.1288/00005537-198607000-00004
13.
Gray
,
S. D.
,
Barkmeier
,
J.
,
Jones
,
D.
,
Titze
,
I.
, and
Druker
,
D.
,
1992
, “
Vocal Evaluation of Thyroplastic Surgery in the Treatment of Unilateral Vocal Fold Paralysis
,”
Laryngoscope
,
102
(
4
), pp.
415
421
.10.1288/00005537-199204000-00008
14.
Lundy
,
D. S.
,
Casiano
,
R. R.
, and
Xue
,
J. W.
,
2004
, “
Can Maximum Phonation Time Predict Voice Outcome After Thyroplasty Type I?
,”
Laryngoscope
,
114
(
8
), pp.
1447
1454
.10.1097/00005537-200408000-00025
15.
Kocak
,
I.
,
Dogan
,
M.
,
Tadihan
,
E.
,
Cakir
,
Z. A.
,
Bengisu
,
S.
, and
Akpinar
,
M.
,
2008
, “
Window Anterior Commissure Relaxation Laryngoplasty in the Management of High-Pitched Voice Disorders
,”
Arch. Otolaryngol., Head Neck Surg.
,
134
(
12
), pp.
1263
1269
.10.1001/archotol.134.12.1263
16.
Ford
,
C. N.
,
1999
, “
Intraoperative Decision Making in Medialization Laryngoplasty
,”
Op. Tech. Otolaryngol., Head Neck Surg.
,
10
(
1
), pp.
17
21
.10.1016/S1043-1810(99)80044-X
17.
Parker
,
N. P.
,
Barbu
,
A. M.
,
Hillman
,
R. E.
,
Zeitels
,
S. M.
, and
Burns
,
J. A.
,
2015
, “
Revision Transcervical Medialization Laryngoplasty for Unilateral Vocal Fold Paralysis
,”
Otolaryngol., Head Neck Surg.
,
153
(
4
), pp.
593
598
.10.1177/0194599815585091
18.
Cohen
,
J. T.
,
Bates
,
D. D.
, and
Postma
,
G. N.
,
2004
, “
Revision Gore-Tex Medialization Laryngoplasty
,”
Otolaryngol., Head Neck Surg.
,
131
(
3
), pp.
236
240
.10.1016/j.otohns.2004.03.023
19.
Woo
,
P.
,
Pearl
,
A. W.
,
Hsiung
,
M.
, and
Som
,
P.
,
2001
, “
Failed Medialization Laryngoplasty: Management by Revision Surgery
,”
Otolaryngol., Head Neck Surg.
,
124
(
6
), pp.
615
621
.10.1177/019459980112400603
20.
Nasseri
,
S. S.
, and
Maragos
,
N. E.
,
2000
, “
Combination Thyroplasty and the “Twisted Larynx:” Combined Type IV and Type I Thyroplasty for Superior Laryngeal Nerve Weakness
,”
J. Voice
,
14
(
1
), pp.
104
111
.10.1016/S0892-1997(00)80100-9
21.
Xue
,
Q.
,
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2014
, “
Subject-Specific Computational Modeling of Human Phonation
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1445
1456
.10.1121/1.4864479
22.
Avhad
,
A.
,
Li
,
Z.
,
Wilson
,
A.
,
Sayce
,
L.
,
Chang
,
S.
,
Rousseau
,
B.
, and
Luo
,
H.
,
2022
, “
Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration
,”
Fluids
,
7
(
3
), p.
97
.10.3390/fluids7030097
23.
Movahhedi
,
M.
,
Geng
,
B.
,
Xue
,
Q.
, and
Zheng
,
X.
,
2021
, “
A Computational Framework for Patient-Specific Surgical Planning of Type 1 Thyroplasty
,”
JASA Express Lett.
,
1
(
12
), p.
125203
.10.1121/10.0009084
24.
Li
,
Z.
,
Wilson
,
A.
,
Sayce
,
L.
,
Avhad
,
A.
,
Rousseau
,
B.
, and
Luo
,
H.
,
2021
, “
Numerical and Experimental Investigations on Vocal Fold Approximation in Healthy and Simulated Unilateral Vocal Fold Paralysis
,”
Appl. Sci.
,
11
(
4
), p.
1817
.10.3390/app11041817
25.
Wu
,
L.
, and
Zhang
,
Z.
,
2023
, “
Effects of Implant and Vocal Fold Stiffness on Voice Production After Medialization Laryngoplasty in an MRI-Based Vocal Fold Model
,”
J. Biomech.
,
149
, p.
111483
.10.1016/j.jbiomech.2023.111483
26.
Cameron
,
B. H.
,
Zhang
,
Z.
, and
Chhetri
,
D. K.
,
2020
, “
Effects of Thyroplasty Implant Stiffness on Glottal Shape and Voice Acoustics
,”
Laryngoscope Invest. Otolaryngol.
,
5
(
1
), pp.
82
89
.10.1002/lio2.322
27.
Luo
,
H.
,
Mittal
,
R.
, and
Bielamowicz
,
S. A.
,
2009
, “
Analysis of Flow-Structure Interaction in the Larynx During Phonation Using an Immersed-Boundary Method
,”
J. Acoust. Soc. Am.
,
126
(
2
), pp.
816
824
.10.1121/1.3158942
28.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
,
2000
, “
A Finite-Element Model of Vocal-Fold Vibration
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
3003
3012
.10.1121/1.1324678
29.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
,
2005
, “
Aerodynamic Transfer of Energy to the Vocal Folds
,”
J. Acoust. Soc. Am.
,
118
(
3
), pp.
1689
1700
.10.1121/1.2000787
30.
Zörner
,
S.
,
Kaltenbacher
,
M.
, and
Döllinger
,
M.
,
2013
, “
Investigation of Prescribed Movement in Fluid–Structure Interaction Simulation for the Human Phonation Process
,”
Comput. Fluids
,
86
, pp.
133
140
.10.1016/j.compfluid.2013.06.031
31.
Tao
,
C.
,
Zhang
,
Y.
,
Hottinger
,
D. G.
, and
Jiang
,
J. J.
,
2007
, “
Asymmetric Airflow and Vibration Induced by the Coanda Effect in a Symmetric Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
2270
2278
.10.1121/1.2773960
32.
Yang
,
J.
,
Yu
,
F.
,
Krane
,
M.
, and
Zhang
,
L. T.
,
2018
, “
The Perfectly Matched Layer Absorbing Boundary for Fluid–Structure Interactions Using the Immersed Finite Element Method
,”
J. Fluids Struct.
,
76
, pp.
135
152
.10.1016/j.jfluidstructs.2017.09.002
33.
Chang
,
S.
,
Novaleski
,
C. K.
,
Kojima
,
T.
,
Mizuta
,
M.
,
Luo
,
H.
, and
Rousseau
,
B.
,
2016
, “
Subject-Specific Computational Modeling of Evoked Rabbit Phonation
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
011005
.10.1115/1.4032057
34.
Li
,
Z.
,
Chen
,
Y.
,
Chang
,
S.
, and
Luo
,
H.
,
2020
, “
A Reduced-Order Flow Model for Fluid–Structure Interaction Simulation of Vocal Fold Vibration
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021005
.10.1115/1.4044033
35.
Li
,
Z.
,
Wilson
,
A.
,
Sayce
,
L.
,
Ding
,
A.
,
Rousseau
,
B.
, and
Luo
,
H.
,
2023
, “
Subject-Specific Modeling of Implant Placement for Type I Thyroplasty Surgery
,”
Ann. Biomed. Eng.
,
51
(
10
), pp.
2182
2191
.10.1007/s10439-023-03250-w
36.
Thibeault
,
S. L.
,
Gray
,
S. D.
,
Bless
,
D. M.
,
Chan
,
R. W.
, and
Ford
,
C. N.
,
2002
, “
Histologic and Rheologic Characterization of Vocal Fold Scarring
,”
J. Voice
,
16
(
1
), pp.
96
104
.10.1016/S0892-1997(02)00078-4
37.
Gartling
,
G. J.
,
Sayce
,
L.
,
Kimball
,
E. E.
,
Sueyoshi
,
S.
, and
Rousseau
,
B.
,
2021
, “
A Comparison of the Localization of Integral Membrane Proteins in Human and Rabbit Vocal Folds
,”
Laryngoscope
,
131
(
4
), pp.
E1265
E1271
.10.1002/lary.29243
38.
Ge
,
P. J.
,
French
,
L. C.
,
Ohno
,
T.
,
Zealear
,
D. L.
, and
Rousseau
,
B.
,
2009
, “
Model of Evoked Rabbit Phonation
,”
Ann. Otol., Rhinol., Laryngol.
,
118
(
1
), pp.
51
55
.10.1177/000348940911800109
39.
Döllinger
,
M.
,
Kniesburges
,
S.
,
Berry
,
D. A.
,
Birk
,
V.
,
Wendler
,
O.
,
Dürr
,
S.
,
Alexiou
,
C.
, and
Schützenberger
,
A.
,
2018
, “
Investigation of Phonatory Characteristics Using Ex Vivo Rabbit Larynges
,”
J. Acoust. Soc. Am.
,
144
(
1
), pp.
142
152
.10.1121/1.5043384
40.
Smith
,
S. L.
,
Titze
,
I. R.
,
Storck
,
C.
, and
Mau
,
T.
,
2020
, “
Effect of Vocal Fold Implant Placement on Depth of Vibration and Vocal Output
,”
Laryngoscope
,
130
(
9
), pp.
2192
2198
.10.1002/lary.28365
41.
Novaleski
,
C. K.
,
Kojima
,
T.
,
Chang
,
S.
,
Luo
,
H.
,
Valenzuela
,
C. V.
, and
Rousseau
,
B.
,
2016
, “
Nonstimulated Rabbit Phonation Model: Cricothyroid Approximation
,”
Laryngoscope
,
126
(
7
), pp.
1589
1594
.10.1002/lary.25559
42.
Hirano
,
M.
,
1981
, “
The Structure of the Vocal Folds
,”
Vocal Fold Physiology
, Biomechanics, Acoustics and Phonatory Control, l. R. Titze and R. C. Scherer, eds., pp.
33
41
.
43.
Miyauchi
,
S.
,
Omori
,
T.
,
Takeuchi
,
S.
, and
Kajishima
,
T.
,
2011
, “
Numerical Simulation of Unsteady Flow Through a Two-Dimensional Channel With a Vocal Cord Model
,”
ASME
Paper No. AJK2011-20009.10.1115/AJK2011-20009
44.
Latifi
,
N.
,
Miri
,
A. K.
, and
Mongeau
,
L.
,
2014
, “
Determination of the Elastic Properties of Rabbit Vocal Fold Tissue Using Uniaxial Tensile Testing and a Tailored Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
366
374
.10.1016/j.jmbbm.2014.07.031
45.
Carrigy
,
N. B.
,
Carey
,
J. P.
,
Martin
,
A. R.
,
Remmers
,
J. E.
,
Zareian
,
A.
,
Topor
,
Z.
,
Grosse
,
J.
,
Noga
,
M.
, and
Finlay
,
W. H.
,
2016
, “
Simulation of Muscle and Adipose Tissue Deformation in the Passive Human Pharynx
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
7
), pp.
780
788
.10.1080/10255842.2015.1062477
46.
Singh
,
G.
, and
Chanda
,
A.
,
2021
, “
Mechanical Properties of Whole-Body Soft Human Tissues: A Review
,”
Biomed. Mater.
,
16
(
6
), p.
062004
.10.1088/1748-605X/ac2b7a
47.
Mittal
,
R.
,
Erath
,
B. D.
, and
Plesniak
,
M. W.
,
2013
, “
Fluid Dynamics of Human Phonation and Speech
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
437
467
.10.1146/annurev-fluid-011212-140636
48.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow–Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.10.1016/j.jcp.2008.05.001
49.
Tian
,
F. B.
,
Dai
,
H.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2014
, “
Fluid–Structure Interaction Involving Large Deformations: 3D Simulations and Applications to Biological Systems
,”
J. Comput. Phys.
,
258
, pp.
451
469
.10.1016/j.jcp.2013.10.047
50.
Zhang
,
K.
,
Siegmund
,
T.
,
Chan
,
R. W.
, and
Fu
,
M.
,
2009
, “
Predictions of Fundamental Frequency Changes During Phonation Based on a Biomechanical Model of the Vocal Fold Lamina Propria
,”
J. Voice
,
23
(
3
), pp.
277
282
.10.1016/j.jvoice.2007.09.010
51.
Kelleher
,
J. E.
,
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R. W.
,
2010
, “
Spatially Varying Properties of the Vocal Ligament Contribute to Its Eigenfrequency Response
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
8
), pp.
600
609
.10.1016/j.jmbbm.2010.07.009
52.
Palaparthi
,
A.
,
Smith
,
S.
,
Mau
,
T.
, and
Titze
,
I. R.
,
2019
, “
A Computational Study of Depth of Vibration Into Vocal Fold Tissues
,”
J. Acoust. Soc. Am.
,
145
(
2
), pp.
881
891
.10.1121/1.5091099
53.
Titze
,
I. R.
,
1994
, “
Principles of Voice Production
, 1st Edition,” Prentice-Hall, Inc., Englewood Cliffs, NJ.
54.
Oren
,
L.
,
Dembinski
,
D.
,
Gutmark
,
E.
, and
Khosla
,
S.
,
2014
, “
Characterization of the Vocal Fold Vertical Stiffness in a Canine Model
,”
J. Voice
,
28
(
3
), pp.
297
304
.10.1016/j.jvoice.2013.11.001
55.
Miri
,
A. K.
,
2014
, “
Mechanical Characterization of Vocal Fold Tissue: A Review Study
,”
J. Voice
,
28
(
6
), pp.
657
667
.10.1016/j.jvoice.2014.03.001
56.
Bauer
,
H.
, and
König-Heidelberg
,
W.
,
1967
, “
Physikalische Und Histologische Untersuchungen an Normalen Und Einem Weiblichen Virillsierten Kehlkopf
,”
Archiv Für Klinische Und Experimentelle Ohren-, Nasen-Und Kehlkopfheilkunde
,
188
(
2
), pp.
358
363
.10.1007/BF01278531
57.
Chan
,
R. W.
,
Fu
,
M.
,
Young
,
L.
, and
Tirunagari
,
N.
,
2007
, “
Relative Contributions of Collagen and Elastin to Elasticity of the Vocal Fold Under Tension
,”
Ann. Biomed. Eng.
,
35
(
8
), pp.
1471
1483
.10.1007/s10439-007-9314-x
58.
Perlman
,
A. L.
,
Titze
,
I. R.
, and
Cooper
,
D. S.
,
1984
, “
Elasticity of Canine Vocal Fold Tissue
,”
J. Speech, Language, Hear. Res.
,
27
(
2
), pp.
212
219
.10.1044/jshr.2702.212
59.
Chang
,
S.
,
Tian
,
F. B.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2013
, “
The Role of Finite Displacements in Vocal Fold Modeling
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111008
.10.1115/1.4025330
60.
Qiu
,
Q.
,
Schutte
,
H.
,
Gu
,
L.
, and
Yu
,
Q.
,
2003
, “
An Automatic Method to Quantify the Vibration Properties of Human Vocal Folds Via Videokymography
,”
Folia Phoniatr.
,
55
(
3
), pp.
128
136
.10.1159/000070724
61.
George
,
N. A.
,
de Mul
,
F. F.
,
Qiu
,
Q.
,
Rakhorst
,
G.
, and
Schutte
,
H. K.
,
2008
, “
Depth-Kymography: High-Speed Calibrated 3D Imaging of Human Vocal Fold Vibration Dynamics
,”
Phys. Med. Biol.
,
53
(
10
), pp.
2667
2675
.10.1088/0031-9155/53/10/015
62.
Zheng
,
X.
,
Bielamowicz
,
S.
,
Luo
,
H.
, and
Mittal
,
R.
,
2009
, “
A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
625
642
.10.1007/s10439-008-9630-9
63.
Regner
,
M. F.
,
Tao
,
C.
,
Ying
,
D.
,
Olszewski
,
A.
,
Zhang
,
Y.
, and
Jiang
,
J. J.
,
2012
, “
The Effect of Vocal Fold Adduction on the Acoustic Quality of Phonation: Ex Vivo Investigations
,”
J. Voice
,
26
(
6
), pp.
698
705
.10.1016/j.jvoice.2011.09.012
You do not currently have access to this content.