Abstract

The deformation of articular cartilage and its cells at the micro-scale during dynamic activities such as gait has high mechanoregulatory importance. Measuring the cellular geometries during such dynamics has been limited by the rate of microscopic image acquisition. The introduction of resonating mirrors for image rasterization (resonant scanning), rather than the conventional servo control (galvano scanning), has significantly improved the scanning rate by more than 100×. However, the high scanning rate comes at the cost of image quality, thereby posing challenges in image processing. Here, resonance-driven 3-D laser microscopy is used to observe the transient, micro-scale deformation of articular cartilage and its cells under osmotic challenge conditions. Custom image segmentation and deformable registration software were implemented for analysis of the resonance-scanned microscopy data. The software exhibited robust and accurate performance on the osmotic swelling measurements, as well as quantitative validation testing. The resonance-scanning protocol and developed analysis software allow for simultaneous strain calculation of both the local tissue and cells, and are thus a valuable tool for real-time probing of the cell–matrix interactions that are highly relevant in the fields of orthopedic biomechanics, cell mechanobiology, and functional tissue engineering.

References

1.
Guilak
,
F.
,
1994
, “
Volume and Surface Area Measurement of Viable Chondrocytes In Situ Using Geometric Modelling Of Serial Confocal Sections.
,”
J. Microsc.
,
173
(
3
), pp.
245
256
.10.1111/j.1365-2818.1994.tb03447.x
2.
Han
,
S.-K.
,
Federico
,
S.
,
Grillo
,
A.
,
Giaquinta
,
G.
, and
Herzog
,
W.
,
2007
, “
The Mechanical Behaviour of Chondrocytes Predicted With a Micro-Structural Model of Articular Cartilage
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
139
150
.10.1007/s10237-006-0016-3
3.
Han
,
S.-K.
,
Federico
,
S.
, and
Herzog
,
W.
,
2011
, “
A Depth-Dependent Model of the Pericellular micRoenvironment of Chondrocytes in Articular Cartilage
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
7
), pp.
657
664
.10.1080/10255842.2010.493512
4.
Mansfield
,
J. C.
,
Bell
,
J. S.
, and
Winlove
,
C. P.
,
2015
, “
The Micromechanics of the Superficial Zone of Articular Cartilage
,”
Osteoarthritis Cartilage
,
23
(
10
), pp.
1806
1816
.10.1016/j.joca.2015.05.030
5.
Madden
,
R.
,
Han
,
S.-K.
, and
Herzog
,
W.
,
2013
, “
Chondrocyte Deformation Under Extreme Tissue Strain in Two Regions of the Rabbit Knee Joint
,”
J. Biomech.
,
46
(
3
), pp.
554
560
.10.1016/j.jbiomech.2012.09.021
6.
Abusara
,
Z.
,
Seerattan
,
R.
,
Leumann
,
A.
,
Thompson
,
R.
, and
Herzog
,
W.
,
2010
, “
A Novel Method for Determining Articular Cartilage Chondrocyte Mechanics In Vivo
,”
J. Biomech.
,
44
(
5
), pp.
930
934
.10.1016/j.jbiomech.2010.11.031
7.
Komeili
,
A.
,
Otoo
,
B. S.
,
Abusara
,
Z.
,
Sibole
,
S.
,
Federico
,
S.
, and
Herzog
,
W.
,
2021
, “
Chondrocyte Deformations Under Mild Dynamic Loading Conditions
,”
Ann. Biomed. Eng.
,
49
(
2
), pp.
846
857
.10.1007/s10439-020-02615-9
8.
Loewke
,
N. O.
,
Qiu
,
Z.
,
Mandella
,
M. J.
,
Ertsey
,
R.
,
Loewke
,
A.
,
Gunaydin
,
L. A.
,
Rosenthal
,
E. L.
,
Contag
,
C. H.
, and
Solgaard
,
O.
,
2020
, “
Software-Based Phase Control, Video-Rate Imaging, and Real-Time Mosaicing with a Lissajous-Scanned Confocal Microscope
,”
IEEE Trans. Med. Imaging
,
39
(
4
), pp.
1127
1137
.10.1109/TMI.2019.2942552
9.
Sun
,
Z.
,
Quan
,
R.
, and
Solgaard
,
O.
,
2021
, “
Resonant Scanning Design and Control for Fast Spatial Sampling
,”
Sci. Rep.
,
11
, p.
20011
.10.1038/s41598-021-99373-y
10.
Sibole
,
S.
,
2022
,
siboles/resonant_lsm: v0.0
, Zenodo, Geneva, Switzerland.10.5281/zenodo.6449083
11.
Sibole
,
S.
,
2022
,
siboles/lsmgridtrack: 0.3
, Zenodo, Geneva, Switzerland.10.5281/zenodo.6423406
12.
Schroeder
,
W.
,
Martin
,
K.
, and
Lorensen
,
B.
,
2006
,
The Visualization Toolkit
, 4 ed.,
Kitware, New York
.
13.
Lowekamp
,
B. C.
,
Chen
,
D. T.
,
Ibáñez
,
L.
, and
Blezek
,
D.
,
2013
, “
The Design of SimpleITK
,”
Front. Neuroinf.
,
7
, p.
45
.10.3389/fninf.2013.00045
14.
Zipfel
,
W. R.
,
Williams
,
R. M.
, and
Webb
,
W. W.
,
2003
, “
Nonlinear magic: multiphoton microscopy in the biosciences
,”
Nat. Biotech.
,
21
(
11
), pp.
1369
1377
.10.1038/nbt899
15.
Moo
,
E. K.
,
Sibole
,
S. C.
,
Han
,
S. K.
, and
Herzog
,
W.
,
2018
, “
Three-Dimensional Micro-Scale Strain Mapping in Living Biological Soft Tissues
,”
Acta Biomater.
,
70
, pp.
260
269
.10.1016/j.actbio.2018.01.048
16.
Stark
,
J. A.
,
2000
, “
Adaptive image contrast enhancement using generalizations of histogram equalization
,”
IEEE Trans. Image Process.
,
9
(
5
), pp.
889
896
.10.1109/83.841534
17.
Chan
,
T.
, and
Vese
,
L.
,
2001
, “
Active contours without edges
,”
IEEE Trans. Image Process.
,
10
(
2
), pp.
266
277
.10.1109/83.902291
18.
Mosaliganti
,
K.
,
Smith
,
B.
,
Gelas
,
A.
,
Gouaillard
,
A.
, and
Megason
,
S.
,
2009
, “
Level Set Segmentation: Active Contours Without Edges
,”
Insight J.
, March.10.54294/8jk6oy
19.
Whitaker
,
R. T.
,
2000
, “
Reducing Aliasing Artifacts in Iso-Surfaces of Binary Volumes
,” 2000 IEEE Symposium on Volume Visualization (
VV 2000
), Salt Lake City, UT, Oct. 9–10, pp.
23
32
.10.1109/VV.2000.10004
20.
Schroeder
,
W.
,
Maynard
,
R.
, and
Geveci
,
B.
,
2015
, “
Flying Edges: A High-Performance Scalable Isocontouring Algorithm
,” 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (
LDAV
), Chicago, IL, Oct. 25–26, pp.
33
40
.10.1109/LDAV.2015.7348069
21.
Alyassin
,
A. M.
,
Lancaster
,
J. L.
,
Downs
,
J. H.
, and
Fox
,
P. T.
,
1994
, “
Evaluation of New Algorithms for the Interactive Measurement of Surface Area and Volume
,”
Med. Phys.
,
21
(
6
), pp.
741
752
.10.1118/1.597333
22.
Mattes
,
D.
,
Haynor
,
D. R.
,
Vesselle
,
H.
,
Lewellyn
,
T. K.
, and
Eubank
,
W.
,
2001
, “
Nonrigid Multimodality Image Registration
,”
Proc. SPIE
,
4322
, pp.
1609
1620
.
23.
Mattes
,
D.
,
Haynor
,
D. R.
,
Vesselle
,
H.
,
Lewellen
,
T. K.
, and
Eubank
,
W.
,
2003
, “
PET-CT image registration in the chest using free-form deformations
,”
IEEE Trans. Med. Imaging
,
22
(
1
), pp.
120
128
.10.1109/TMI.2003.809072
24.
Bookstein
,
F.
,
1989
, “
Principal warps: thin-plate splines and the decomposition of deformations
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
11
(
6
), pp.
567
585
.10.1109/34.24792
25.
Lehmann
,
G.
,
2010
, “
Noise Simulation
,”
Insight J.
, July.10.54294/vh6vbw
26.
Cho
,
S.-J.
,
Sattar
,
A. K. M. A.
,
Jeong
,
E.-H.
,
Satchi
,
M.
,
Cho
,
J. A.
,
Dash
,
S.
,
Mayes
,
M. S.
,
Stromer
,
M. H.
, and
Jena
,
B. P.
,
2002
, “
Aquaporin 1 Regulates GTP-Induced Rapid Gating of Water in Secretory Vesicles
,”
Proc. Natl. Acad. Sci.
,
99
(
7
), pp.
4720
4724
.10.1073/pnas.072083499
27.
Maiato
,
H.
, ed.,
2020
,
Cytoskeleton Dynamics: Methods and Protocols, Vol. 2101 of Methods in Molecular Biology
,
Springer US
,
New York
.
28.
Bingham
,
J. T.
,
Papannagari
,
R.
,
Van de Velde
,
S. K.
,
Gross
,
C.
,
Gill
,
T. J.
,
Felson
,
D. T.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2008
, “
In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint
,”
Rheumatology (Oxford, England)
,
47
(
11
), pp.
1622
1627
.10.1093/rheumatology/ken345
29.
Sibole
,
S. C.
,
Moo
,
E. K.
,
Federico
,
S.
, and
Herzog
,
W.
,
2022
,
Dynamic Deformation Calculation of Articular Cartilage and Cells Using Resonance-Driven Laser Scanning Microscopy-Osmotic Challenge and Validation Testing Dataset
, Zenovo, Geneva, Switzerland.10.5281/zenodo.6449895
30.
Sibole
,
S. C.
,
Moo
,
E. K.
,
Federico
,
S.
, and
Herzog
,
W.
,
2022
,
Dynamic Deformation Calculation of Articular Cartilage and Cells Using Resonance-Driven Laser Scanning Microscopy - Deformable Registration Validation Dataset
, Zenodo, Geneva, Switzerland.10.5281/zenodo.6449141
You do not currently have access to this content.