Abstract

This paper aims at proposing an automatic method to design and adjust simplified muscle paths of a musculoskeletal model. These muscle paths are composed of straight lines described by a limited set of fixed active via points and an optimization routine is developed to place these via points on the model in order to fit moment arms and musculotendon lengths input data. The method has been applied to a forearm musculoskeletal model extracted from the literature, using theoretical input data as an example. Results showed that for 75% of the muscle set, the relative root-mean-square error between literature theoretical data and the results from optimized muscle path was under 29.23% for moment arms and of 1.09% for musculotendon lengths. These results confirm the ability of the method to automatically generate computationally efficient muscle paths for musculoskeletal simulations. Using only via points lowers computational expense compared to paths exhibiting wrapping objects. A proper balance between computational time and anatomical realism should be found to help those models being interpreted by practitioners.

References

1.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clinical Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
2.
Herrmann
,
A. M.
, and
Delp
,
S. L.
,
1999
, “
Moment Arm and Force-Generating Capacity of the Extensor Carpi Ulnaris After Transfer to the Extensor Carpi Radialis Brevis
,”
J. Hand Surg.
,
24
(
5
), pp.
1083
1090
.10.1053/jhsu.1999.1083
3.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
93
126
.10.1080/10255840008908000
4.
Garland
,
A. K.
,
Shah
,
D. S.
, and
Kedgley
,
A. E.
,
2018
, “
Wrist Tendon Moment Arms: Quantification by Imaging and Experimental Techniques
,”
J. Biomech.
,
68
, pp.
136
140
.10.1016/j.jbiomech.2017.12.024
5.
Murray
,
W. M.
,
Delp
,
S. L.
, and
Buchanan
,
T. S.
,
1995
, “
Variation of Muscle Moment Arms With Elbow and Forearm Position
,”
J. Biomech.
,
28
(
5
), pp.
513
525
.10.1016/0021-9290(94)00114-J
6.
Gonzalez
,
R. V.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
,
1997
, “
How Muscle Architecture and Moment Arms Affect Wrist Flexion-Extension Moments
,”
J. Biomech.
,
30
(
7
), pp.
705
712
.10.1016/S0021-9290(97)00015-8
7.
Holzbaur
,
K. R.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.10.1007/s10439-005-3320-7
8.
Jensen
,
R. H.
, and
Davy
,
D. T.
,
1975
, “
An Investigation of Muscle Lines of Action About the Hip: A Centroid Line Approach versus the Straight Line Approach
,”
J. Biomech.
,
8
(
2
), pp.
103
110
.10.1016/0021-9290(75)90090-1
9.
Song
,
D.
,
Lan
,
N.
,
Loeb
,
G. E.
, and
Gordon
,
J.
,
2008
, “
Model-Based Sensorimotor Integration for Multi-Joint Control: Development of a Virtual Arm Model
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
1033
1048
.10.1007/s10439-008-9461-8
10.
Gatti
,
C. J.
, and
Hughes
,
R. E.
,
2009
, “
Optimization of Muscle Wrapping Objects Using Simulated Annealing
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1342
1347
.10.1007/s10439-009-9710-5
11.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2000
, “
The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
1
), pp.
1
30
.10.1080/10255840008915251
12.
Favre
,
P.
,
Gerber
,
C.
, and
Snedeker
,
J. G.
,
2010
, “
Automated Muscle Wrapping Using Finite Element Contact Detection
,”
J. Biomech.
,
43
(
10
), pp.
1931
1940
.10.1016/j.jbiomech.2010.03.018
13.
Agarwal
,
P.
,
Kuo
,
P. H.
,
Neptune
,
R. R.
, and
Deshpande
,
A. D.
,
2013
, “
A Novel Framework for Virtual Prototyping of Rehabilitation Exoskeletons
,”
IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
, Seattle, WA, June 24–26, pp.
1
6
.
14.
Puchaud
,
P.
,
Sauret
,
C.
,
Muller
,
A.
,
Bideau
,
N.
,
Dumont
,
G.
,
Pillet
,
H.
, and
Pontonnier
,
C.
,
2020
, “
Accuracy and Kinematics Consistency of Marker-Based Scaling Approaches on a Lower Limb Model: A Comparative Study With Imagery Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
3
), pp.
114
125
.10.1080/10255842.2019.1705798
15.
Lund
,
M. E.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Rasmussen
,
J.
,
2015
, “
Scaling of Musculoskeletal Models From Static and Dynamic Trials
,”
Int. Biomech.
,
2
(
1
), pp.
1
11
.10.1080/23335432.2014.993706
16.
Pennestrì
,
E.
,
Stefanelli
,
R.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2007
, “
Virtual Musculo-Skeletal Model for the Biomechanical Analysis of the Upper Limb
,”
J. Biomech.
,
40
(
6
), pp.
1350
1361
.10.1016/j.jbiomech.2006.05.013
17.
Rankin
,
J. W.
, and
Neptune
,
R. R.
,
2012
, “
Musculotendon Lengths and Moment Arms for a Three-Dimensional Upper-Extremity Model
,”
J. Biomech.
,
45
(
9
), pp.
1739
1744
.10.1016/j.jbiomech.2012.03.010
18.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
What is a Moment Arm? Calculating Muscle Effectiveness in Biomechanical Models Using Generalized Coordinates
,” ASME Paper No.
DETC2013-13633.
19.
An
,
K. N.
,
Takahashi
,
K.
,
Harrigan
,
T. P.
, and
Chao
,
E. Y.
,
1984
, “
Determination of Muscle Orientations and Moment Arms
,”
ASME J. Biomech. Eng.
,
106
(
3
), pp.
280
282
.10.1115/1.3138494
20.
Wu
,
G.
,
Van Der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
21.
Dumas
,
R.
,
Chèze
,
L.
, and
Verriest
,
J. P.
,
2007
, “
Adjustments to McConville et al. and Young et al. body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
3
), pp.
543
553
.10.1016/j.jbiomech.2006.02.013
22.
Yeadon
,
M. R.
,
1990
, “
The Simulation of Aerial movement-II. A Mathematical Inertia Model of the Human Body
,”
J. Biomech.
,
23
(
1
), pp.
67
74
.10.1016/0021-9290(90)90370-I
23.
Muller
,
A.
,
Pontonnier
,
C.
,
Puchaud
,
P.
, and
Dumont
,
G.
,
2019
, “
CusToM: A Matlab Toolbox for Musculoskeletal Simulation
,”
J. Open Source Software
,
4
(
33
), p.
927
.10.21105/joss.00927
24.
Murray
,
W. M.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
,
2002
, “
Scaling of Peak Moment Arms of Elbow Muscles With Upper Extremity Bone Dimensions
,”
J. Biomech.
,
35
(
1
), pp.
19
26
.10.1016/S0021-9290(01)00173-7
25.
Goislard De Monsabert
,
B.
,
Edwards
,
D.
,
Shah
,
D.
, and
Kedgley
,
A.
,
2018
, “
Importance of Consistent Datasets in Musculoskeletal Modelling: A Study of the Hand and Wrist
,”
Ann. Biomed. Eng.
,
46
(
1
), pp.
71
85
.10.1007/s10439-017-1936-z
26.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
27.
Wu
,
W.
,
Lee
,
P. V.
,
Bryant
,
A. L.
,
Galea
,
M.
, and
Ackland
,
D. C.
,
2016
, “
Subject-Specific Musculoskeletal Modeling in the Evaluation of Shoulder Muscle and Joint Function
,”
J. Biomech.
,
49
(
15
), pp.
3626
3634
.10.1016/j.jbiomech.2016.09.025
28.
Buford
,
W. L.
,
Ivey
,
F. M.
,
Malone
,
J. D.
,
Patterson
,
R. M.
,
Pearce
,
G.
,
Nguyen
,
D. K.
, and
Stewart
,
A. A.
,
1997
, “
Muscle Balance at the Knee-Moment Arms for the Normal Knee and the Acl-Minus Knee
,”
IEEE Trans. Rehab. Eng.
,
5
(
4
), pp.
367
379
.10.1109/86.650292
You do not currently have access to this content.