Abstract

Flexion-distraction injuries frequently cause traumatic cervical spinal cord injury (SCI). Post-traumatic instability can cause aggravation of the secondary SCI during patient care. However, there is little information on how the pattern of disco-ligamentous injury affects the SCI severity and mechanism. This study objective was to analyze how posterior disco-ligamentous injuries affect spinal cord compression and stress and strain patterns in the spinal cord during post-traumatic flexion and extension. A cervical spine finite element model including the spinal cord was used and different combinations of partial or complete intervertebral disc (IVD) rupture and disruption of various posterior ligaments were modeled at C4–C5, C5–C6, or C6–C7. In flexion, complete IVD rupture combined with posterior ligamentous complex rupture was the most severe injury leading to the highest von Mises stress (47–66 kPa), principal strains p1 (0.32–0.41 in white matter) and p3 (−0.78 to −0.96 in white matter) in the spinal cord and the highest spinal cord compression (35–48%). The main post-trauma SCI mechanism was identified as the compression of the anterior white matter at the injured level combined with distraction of the posterior spinal cord during flexion. There was also a concentration of the maximum stresses in the gray matter during post-traumatic flexion. Finally, in extension, the injuries tested had little impact on the spinal cord. The capsular ligament was the most important structure to protect the spinal cord. Its status should be carefully examined during the patient's management.

References

1.
Hasler
,
R. M.
,
Exadaktylos
,
A. K.
,
Bouamra
,
O.
,
Benneker
,
L. M.
,
Clancy
,
M.
,
Sieber
,
R.
,
Zimmermann
,
H.
, and
Lecky
,
F.
,
2011
, “
Epidemiology and Predictors of Spinal Injury in Adult Major Trauma Patients: European Cohort Study
,”
Eur. Spine J.
,
20
(
12
), pp.
2174
2180
.10.1007/s00586-011-1866-7
2.
Leucht
,
P.
,
Fischer
,
K.
,
Muhr
,
G.
, and
Mueller
,
E. J.
,
2009
, “
Epidemiology of Traumatic Spine Fractures
,”
Injury
,
40
(
2
), pp.
166
172
.10.1016/j.injury.2008.06.040
3.
Pickett
,
G. E.
,
Campos-Benitez
,
M.
,
Keller
,
J. L.
, and
Duggal
,
N.
,
2006
, “
Epidemiology of Traumatic Spinal Cord Injury in Canada
,”
Spine
,
31
(
7
), pp.
799
805
.10.1097/01.brs.0000207258.80129.03
4.
Jones
,
C. F.
, and
Clarke
,
E. C.
,
2019
, “
Engineering Approaches to Understanding Mechanisms of Spinal Column Injury Leading to Spinal Cord Injury
,”
Clin. Biomech.
,
64
, pp.
69
81
.10.1016/j.clinbiomech.2018.03.019
5.
Oyinbo
,
C. A.
,
2011
, “
Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade
,”
Acta Neurobiol. Exp. (Wars)
,
71
(
2
), pp.
281
299
.https://europepmc.org/article/med/21731081
6.
Engsberg
,
J. R.
,
Standeven
,
J. W.
,
Shurtleff
,
T. L.
,
Eggars
,
J. L.
,
Shafer
,
J. S.
, and
Naunheim
,
R. S.
,
2013
, “
Cervical Spine Motion During Extrication
,”
J. Emer. Med.
,
44
(
1
), pp.
122
127
.10.1016/j.jemermed.2012.02.082
7.
Panjabi
,
M.
,
Thibodeau
,
L.
,
Crisco
,
J.
, and
White
,
A.
,
1988
, “
What Constitutes Spinal Instability?
,”
Clin. Neurosurg.
,
34
, pp.
313
339
.https://europepmc.org/article/med/3288400
8.
Izzo
,
R.
,
Popolizio
,
T.
,
Balzano
,
R. F.
,
Pennelli
,
A. M.
,
Simeone
,
A.
, and
Muto
,
M.
,
2019
, “
Imaging of Cervical Spine Traumas
,”
Eur. J. Radiol.
,
117
, pp.
75
88
.10.1016/j.ejrad.2019.05.007
9.
Beauséjour
,
M.-H.
,
Petit
,
Y.
,
Hagen
,
J.
,
Arnoux
,
P.-J.
,
Thiong
,
J.-M. M.
, and
Wagnac
,
E.
,
2020
, “
Contribution of Injured Posterior Ligamentous Complex and Intervertebral Disc on Post-Traumatic Instability at the Cervical Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
12
), pp.
832
12
.10.1080/10255842.2020.1767776
10.
Song
,
K.-J.
,
Kim
,
G.-H.
, and
Lee
,
K.-B.
,
2008
, “
The Efficacy of the Modified Classification System of Soft Tissue Injury in Extension Injury of the Lower Cervical Spine
,”
Spine
,
33
(
15
), pp.
E488
E493
.10.1097/BRS.0b013e31817b6191
11.
Maeda
,
T.
,
Ueta
,
T.
,
Mori
,
E.
,
Yugue
,
I.
,
Kawano
,
O.
,
Takao
,
T.
,
Sakai
,
H.
,
Okada
,
S.
, and
Shiba
,
K.
,
2012
, “
Soft-Tissue Damage and Segmental Instability in Adult Patients With Cervical Spinal Cord Injury Without Major Bone Injury
,”
Spine
,
37
(
25
), pp.
E1560
E1566
.10.1097/BRS.0b013e318272f345
12.
Radcliff
,
K.
, and
Thomasson
,
B. G.
,
2013
, “
Flexion-Distraction Injuries of the Subaxial Cervical Spine
,”
Semin. Spine Surg.
, 25(1), pp.
45
56
.10.1053/j.semss.2012.07.006
13.
Allen
,
B. L.
,
Ferguson
,
R. L.
,
Lehmann
,
T. R.
, and
O'Brien
,
R. P.
,
1982
, “
A Mechanistic Classification of Closed, Indirect Fractures and Dislocations of the Lower Cervical Spine
,”
Spine
,
7
(
1
), pp.
1
27
.10.1097/00007632-198201000-00001
14.
Miller
,
M. D.
,
Gehweiler
,
J. A.
,
Martinez
,
S.
,
Charlton
,
O. P.
, and
Daffner
,
R. H.
,
1978
, “
Significant New Observations on Cervical Spine Trauma
,”
Am. J. Roentgenol.
,
130
(
4
), pp.
659
663
.10.2214/ajr.130.4.659
15.
Quarrington
,
R. D.
,
Jones
,
C. F.
,
Tcherveniakov
,
P.
,
Clark
,
J. M.
,
Sandler
,
S. J.
,
Lee
,
Y. C.
,
Torabiardakani
,
S.
,
Costi
,
J. J.
, and
Freeman
,
B. J.
,
2018
, “
Traumatic Subaxial Cervical Facet Subluxation and Dislocation: Epidemiology, Radiographic Analyses, and Risk Factors for Spinal Cord Injury
,”
Spine J.
,
18
(
3
), pp.
387
398
.10.1016/j.spinee.2017.07.175
16.
Blauth
,
M.
,
Mair
,
G.
,
Schmid
,
R.
,
Reinhold
,
M.
, and
Rieger
,
M.
,
2007
, “
Classification of Injuries of the Subaxial Cervical Spine
,”
AO Spine Manual: Clinical Application, Thieme, Stuttgart,
pp.
21
38
.
17.
Carrino
,
J. A.
,
Manton
,
G. L.
,
Morrison
,
W. B.
,
Vaccaro
,
A. R.
,
Schweitzer
,
M. E.
, and
Flanders
,
A. E.
,
2006
, “
Posterior Longitudinal Ligament Status in Cervical Spine Bilateral Facet Dislocations
,”
Skeletal Radiol.
,
35
(
7
), pp.
510
514
.10.1007/s00256-006-0115-3
18.
Vaccaro
,
A. R.
,
Madigan
,
L.
,
Schweitzer
,
M. E.
,
Flanders
,
A. E.
,
Hilibrand
,
A. S.
, and
Albert
,
T. J.
,
2001
, “
Magnetic Resonance Imaging Analysis of Soft Tissue Disruption After Flexion-Distraction Injuries of the Subaxial Cervical Spine
,”
Spine
,
26
(
17
), pp.
1866
1872
.10.1097/00007632-200109010-00009
19.
Green
,
J.
,
Harle
,
T.
, and
Harris
,
J.
,
1981
, “
Anterior Subluxation of the Cervical Spine: Hyperflexion Sprain
,”
Am. J. Neuroradiol.
,
2
(
3
), pp.
243
250
.http://www.ajnr.org/content/2/3/243.short
20.
White
,
A.
,
Johnson
,
R.
,
Panjabi
,
M.
, and
Southwick
,
W.
,
1975
, “
Biomechanical Analysis of Clinical Stability in the Cervical Spine
,”
Clin. Orthop. Related Res.
, (
109
), pp.
85
96
.10.1097/00003086-197506000-00011
21.
Goel
,
V. K.
,
Clark
,
C. R.
,
McGowan
,
D.
, and
Goyal
,
S.
,
1984
, “
An in-Vitro Study of the Kinematics of the Normal, Injured and Stabilized Cervical Spine
,”
J. Biomech.
,
17
(
5
), pp.
363
376
.10.1016/0021-9290(84)90030-7
22.
Schulte
,
K.
,
Clark
,
C. R.
, and
Goel
,
V. K.
,
1989
, “
Kinematics of the Cervical Spine Following Discectomy and Stabilization
,”
Spine
,
14
(
10
), pp.
1116
1121
.10.1097/00007632-198910000-00015
23.
Richter
,
M.
,
Wilke
,
H.-J.
,
Kluger
,
P.
,
Claes
,
L.
, and
Puhl
,
W.
,
2000
, “
Load-Displacement Properties of the Normal and Injured Lower Cervical Spine In Vitro
,”
Eur. Spine J.
,
9
(
2
), pp.
104
108
.10.1007/s005860050219
24.
Liao
,
S.
,
Schneider
,
N. R.
,
Hüttlin
,
P.
,
Grützner
,
P. A.
,
Weilbacher
,
F.
,
Matschke
,
S.
,
Popp
,
E.
, and
Kreinest
,
M.
,
2018
, “
Motion and Dural Sac Compression in the Upper Cervical Spine During the Application of a Cervical Collar in Case of Unstable Craniocervical Junction—A Study in Two New Cadaveric Trauma Models
,”
PLoS One
,
13
(
4
), p.
e0195215
.10.1371/journal.pone.0195215
25.
Boisclair
,
D.
,
Mac-Thiong
,
J.-M.
,
Parent
,
S.
, and
Petit
,
Y.
,
2011
, “
Effect of Spinal Level and Loading Conditions on the Production of Vertebral Burst Fractures in a Porcine Model
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
094503
.10.1115/1.4004917
26.
Boisclair
,
D.
,
Mac-Thiong
,
J.-M.
,
Parent
,
S.
, and
Petit
,
Y.
,
2013
, “
Compressive Loading of the Spine May Affect the Spinal Canal Encroachment of Burst Fractures
,”
Clin. Spine Surg.
,
26
(
6
), pp.
342
346
.10.1097/BSD.0b013e318246b180
27.
Chang
,
D.
,
Tencer
,
A.
,
Ching
,
R.
,
Treece
,
B.
,
Senft
,
D.
, and
Anderson
,
P.
,
1994
, “
Geometric Changes in the Cervical Spinal Canal During Impact
,”
Spine-Philadelphia
,
19
), pp.
973
973
.10.1097/00007632-199404150-00017
28.
Ching
,
R. P.
,
Watson
,
N. A.
,
Carter
,
J. W.
, and
Tencer
,
A. F.
,
1997
, “
The Effect of Post-Injury Spinal Position on Canal Occlusion in a Cervical Spine Burst Fracture Model
,”
Spine
,
22
(
15
), pp.
1710
1715
.10.1097/00007632-199708010-00005
29.
Nuckley
,
D. J.
,
Van Nausdle
,
J. A.
,
Eck
,
M. P.
, and
Ching
,
R. P.
,
2007
, “
Neural Space and Biomechanical Integrity of the Developing Cervical Spine in Compression
,”
Spine
,
32
(
6
), pp.
E181
E187
.10.1097/01.brs.0000257527.22080.d7
30.
Zhu
,
Q.
,
Lane
,
C.
,
Ching
,
R. P.
,
Gordon
,
J. D.
,
Fisher
,
C. G.
,
Dvorak
,
M. F.
,
Cripton
,
P. A.
, and
Oxland
,
T. R.
,
2008
, “
Translational Constraint Influences Dynamic Spinal Canal Occlusion of the Thoracic Spine: An In Vitro Experimental Study
,”
J. Biomech.
,
41
(
1
), pp.
171
179
.10.1016/j.jbiomech.2007.06.030
31.
Nuckley
,
D. J.
,
Konodi
,
M. A.
,
Raynak
,
G. C.
,
Ching
,
R. P.
,
Chapman
,
J. R.
, and
Mirza
,
S. K.
,
2004
, “
Neural Space Integrity of the Lower Cervical Spine: Effect of Anterior Lesions
,”
Spine
,
29
(
6
), pp.
642
649
.10.1097/01.BRS.0000115132.49734.33
32.
Glassman
,
D. M.
,
Magnusson
,
E.
,
Agel
,
J.
,
Bellabarba
,
C.
, and
Bransford
,
R. J.
,
2019
, “
The Impact of Stenosis and Translation on Spinal Cord Injuries in Traumatic Cervical Facet Dislocations
,”
Spine J.
,
19
(
4
), pp.
687
694
.10.1016/j.spinee.2018.10.015
33.
Miyanji
,
F.
,
Furlan
,
J. C.
,
Aarabi
,
B.
,
Arnold
,
P. M.
, and
Fehlings
,
M. G.
,
2007
, “
Acute Cervical Traumatic Spinal Cord Injury: MR Imaging Findings Correlated With Neurologic Outcome—Prospective Study With 100 Consecutive Patients
,”
Radiology
,
243
(
3
), pp.
820
827
.10.1148/radiol.2433060583
34.
Greaves
,
C. Y.
,
Gadala
,
M. S.
, and
Oxland
,
T. R.
,
2008
, “
A Three-Dimensional Finite Element Model of the Cervical Spine With Spinal Cord: An Investigation of Three Injury Mechanisms
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
396
405
.10.1007/s10439-008-9440-0
35.
Khuyagbaatar
,
B.
,
Kim
,
K.
,
Man Park
,
W.
, and
Hyuk Kim
,
Y.
,
2016
, “
Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms
,”
ASME J. Biomech. Eng.
,
138
(
8
)10.1115/1.4033794
36.
Bailly
,
N.
,
Diotalevi
,
L.
,
Beauséjour
,
M.-H.
,
Wagnac
,
É.
,
Mac-Thiong
,
J.-M.
, and
Petit
,
Y.
,
2020
, “
Numerical Investigation of the Relative Effect of Disc Bulging and Ligamentum Flavum Hypertrophy on the Mechanism of Central Cord Syndrome
,”
Clin. Biomech.
,
74
, pp.
58
65
.10.1016/j.clinbiomech.2020.02.008
37.
Taso
,
M.
,
Fradet
,
L.
,
Callot
,
V.
, and
Arnoux
,
P.
,
2015
, “
Anteroposterior Compression of the Spinal Cord Leading to Cervical Myelopathy: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
sup1
), pp.
2070
2071
.10.1080/10255842.2015.1069625
38.
Khuyagbaatar
,
B.
,
Kim
,
K.
,
Park
,
W. M.
,
Lee
,
S.
, and
Kim
,
Y. H.
,
2017
, “
Increased Stress and Strain on the Spinal Cord Due to Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Under Flexion After Laminectomy
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
231
(
9
), pp.
898
906
.10.1177/0954411917718222
39.
Nishida
,
N.
,
Kanchiku
,
T.
,
Kato
,
Y.
,
Imajo
,
Y.
,
Suzuki
,
H.
,
Yoshida
,
Y.
,
Ohgi
,
J.
,
Chen
,
X.
, and
Taguchi
,
T.
,
2017
, “
Cervical Ossification of the Posterior Longitudinal Ligament: Factors Affecting the Effect of Posterior Decompression
,”
J. Spinal Cord Med.
,
40
(
1
), pp.
93
99
.10.1080/10790268.2016.1140392
40.
Stoner
,
K. E.
,
Abode-Iyamah
,
K. O.
,
Fredericks
,
D. C.
,
Viljoen
,
S.
,
Howard
,
M. A.
, and
Grosland
,
N. M.
,
2020
, “
A Comprehensive Finite Element Model of Surgical Treatment for Cervical Myelopathy
,”
Clin. Biomech.
,
74
, pp.
79
86
.10.1016/j.clinbiomech.2020.02.009
41.
Henao
,
J.
,
Aubin
,
C.-É.
,
Labelle
,
H.
, and
Arnoux
,
P.-J.
,
2016
, “
Patient-Specific Finite Element Model of the Spine and Spinal Cord to Assess the Neurological Impact of Scoliosis Correction: Preliminary Application on Two Cases With and Without Intraoperative Neurological Complications
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
8
), pp.
901
910
.10.1080/10255842.2015.1075010
42.
Lévy
,
S.
,
Baucher
,
G.
,
Roche
,
P.-H.
,
Evin
,
M.
,
Callot
,
V.
, and
Arnoux
,
P.-J.
,
2021
, “
Biomechanical Comparison of Spinal Cord Compression Types Occurring in Degenerative Cervical Myelopathy
,”
Clin. Biomech.
,
81
, p.
105174
.10.1016/j.clinbiomech.2020.105174
43.
Diotalevi
,
L.
,
Bailly
,
N.
,
Wagnac
,
É.
,
Mac-Thiong
,
J.-M.
,
Goulet
,
J.
, and
Petit
,
Y.
,
2020
, “
Dynamics of Spinal Cord Compression With Different Patterns of Thoracolumbar Burst Fractures: Numerical Simulations Using Finite Element Modelling
,”
Clin. Biomech.
,
72
, pp.
186
194
.10.1016/j.clinbiomech.2019.12.023
44.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2006
, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech.
,
21
(
4
), pp.
337
344
.10.1016/j.clinbiomech.2005.12.001
45.
Toubiana Meyer
,
R.
,
Sandoz
,
B.
,
Laville
,
A.
, and
Laporte
,
S.
,
2013
, “
Parametric Finite Element Modelling of the Human Lower Cervical Spinal Cord
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
sup1
), pp.
193
194
.10.1080/10255842.2013.815893
46.
Ozama
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2004
, “
Mechanical Properties and Function of the Spinal Pia Matter
,”
J. Neurosurg. Spine
,
1
(
1
), pp.
122
127
.10.3171/spi.2004.1.1.0122
47.
Polak-Kraśna
,
K.
,
Robak-Nawrocka
,
S.
,
Szotek
,
S.
,
Czyż
,
M.
,
Gheek
,
D.
, and
Pezowicz
,
C.
,
2019
, “
The Denticulate Ligament–Tensile Characterisation and Finite Element Micro-Scale Model of the Structure Stabilising Spinal Cord
,”
J. Mech. Behav. Biomed. Mater.
,
91
, pp.
10
17
.10.1016/j.jmbbm.2018.11.017
48.
Fradet
,
L.
,
Arnoux
,
P.-J.
,
Callot
,
V.
, and
Petit
,
Y.
,
2016
, “
Geometrical Variations in White and Gray Matter Affect the Biomechanics of Spinal Cord Injuries More Than the Arachnoid Space
,”
Adv. Mech. Eng.
,
8
(
8
), pp. 1–8.10.1177/1687814016664703
49.
Shirazi-Adl
,
A.
,
Ahmed
,
A.
, and
Shrivastava
,
S.
,
1986
, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
(
4
), pp.
331
350
.10.1016/0021-9290(86)90009-6
50.
Pospiech
,
J.
,
Stolke
,
D.
,
Wilke
,
H. J.
, and
Claes
,
L. E.
,
1999
, “
Intradiscal Pressure Recordings in the Cervical Spine
,”
Neurosurgery
,
44
(
2
), pp.
379
384
.10.1097/00006123-199902000-00078
51.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Myers
,
T.
,
Elhagediab
,
A.
, and
Sances
,
A.
, Jr.
,
1992
, “
Biomechanical Properties of Human Lumbar Spine Ligaments
,”
J. Biomech.
,
25
(
11
), pp.
1351
1356
.10.1016/0021-9290(92)90290-H
52.
Przybylski
,
G. J.
,
Carlin
,
G. J.
,
Patel
,
P. R.
, and
Woo
,
S. L.
,
1996
, “
Human Anterior and Posterior Cervical Longitudinal Ligaments Possess Similar Tensile Properties
,”
J. Orthop. Res.
,
14
(
6
), pp.
1005
1008
.10.1002/jor.1100140623
53.
Mattucci
,
S. F.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.10.1016/j.jmbbm.2012.02.004
54.
Mattucci
,
S. F.
, and
Cronin
,
D. S.
,
2015
, “
A Method to Characterize Average Cervical Spine Ligament Response Based on Raw Data Sets for Implementation Into Injury Biomechanics Models
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
251
260
.10.1016/j.jmbbm.2014.09.023
55.
Kameyama
,
T.
,
Hashizume
,
Y.
, and
Sobue
,
G.
,
1996
, “
Morphologic Features of the Normal Human Cadaveric Spinal Cord
,”
Spine
,
21
(
11
), pp.
1285
1290
.10.1097/00007632-199606010-00001
56.
Wagnac
,
E.
,
Arnoux
,
P.-J.
,
Garo
,
A.
,
El-Rich
,
M.
, and
Aubin
,
C.-E.
,
2011
, “
Calibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc Under Fast Dynamic Compressive Loads
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101007
.10.1115/1.4005224
57.
Cadotte
,
D.
,
Cadotte
,
A.
,
Cohen-Adad
,
J.
,
Fleet
,
D.
,
Livne
,
M.
,
Wilson
,
J.
,
Mikulis
,
D.
,
Nugaeva
,
N.
, and
Fehlings
,
M.
,
2015
, “
Characterizing the Location of Spinal and Vertebral Levels in the Human Cervical Spinal Cord
,”
Am. J. Neuroradiol.
,
36
(
4
), pp.
803
810
.10.3174/ajnr.A4192
58.
Reid
,
J.
,
1960
, “
Effects of Flexion-Extension Movements of the Head and Spine Upon the Spinal Cord and Nerve Roots
,”
J. Neurol., Neurosurg., Psychiatry
,
23
(
3
), pp.
214
221
.10.1136/jnnp.23.3.214
59.
Stoner
,
K. E.
,
Abode-Iyamah
,
K. O.
,
Magnotta
,
V. A.
,
Howard
,
M. A.
, and
Grosland
,
N. M.
,
2019
, “
Measurement of In Vivo Spinal Cord Displacement and Strain Fields of Healthy and Myelopathic Cervical Spinal Cord
,”
J. Neurosurg. Spine
,
31
(
1
), pp.
53
59
.10.3171/2018.12.SPINE18989
60.
Vaccaro
,
A. R.
,
Hulbert
,
R. J.
,
Patel
,
A. A.
,
Fisher
,
C.
,
Dvorak
,
M.
,
Lehman
,
R. A.
,
Anderson
,
P.
,
Harrop
,
J.
,
Oner
,
F. C.
,
Arnold
,
P.
,
Fehlings
,
M.
,
Hedlund
,
R.
,
Madrazo
,
I.
,
Rechtine
,
G.
,
Aarabi
,
B.
, and
Shainline
,
M.
,
2007
, “
The Subaxial Cervical Spine Injury Classification System: A Novel Approach to Recognize the Importance of Morphology, Neurology, and Integrity of the Disco-Ligamentous Complex
,”
Spine
,
32
(
21
), pp.
2365
2374
.10.1097/BRS.0b013e3181557b92
61.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
62.
Erbulut
,
D.
,
Zafarparandeh
,
I.
,
Lazoglu
,
I.
, and
Ozer
,
A.
,
2014
, “
Application of an Asymmetric Finite Element Model of the C2-T1 Cervical Spine for Evaluating the Role of Soft Tissues in Stability
,”
Med. Eng. Phys.
,
36
(
7
), pp.
915
921
.10.1016/j.medengphy.2014.02.020
63.
Teo
,
E.
, and
Ng
,
H.
,
2001
, “
Evaluation of the Role of Ligaments, Facets and Disc Nucleus in Lower Cervical Spine Under Compression and Sagittal Moments Using Finite Element Method
,”
Med. Eng. Phys.
,
23
(
3
), pp.
155
164
.10.1016/S1350-4533(01)00036-4
64.
Dvir
,
Z.
, and
Prushansky
,
T.
,
2000
, “
Reproducibility and Instrument Validity of a New Ultrasonography-Based System for Measuring Cervical Spine Kinematics
,”
Clin. Biomech.
,
15
(
9
), pp.
658
664
.10.1016/S0268-0033(00)00033-4
65.
Bain
,
A. C.
, and
Meaney
,
D. F.
,
2000
, “
Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
615
622
.10.1115/1.1324667
66.
Ouyang
,
H.
,
Galle
,
B.
,
Li
,
J.
,
Nauman
,
E.
, and
Shi
,
R.
,
2008
, “
Biomechanics of Spinal Cord Injury: A Multimodal Investigation Using Ex Vivo Guinea Pig Spinal Cord White Matter
,”
J. Neurotrauma
,
25
(
1
), pp.
19
29
.10.1089/neu.2007.0340
67.
White, A., and Panjabi
,
M.
,
1990
,
Clinical Biomechanics of the Spine, J. B
,
Lippincott Company
,
Philadelphia, PA
.
68.
Jaumard
,
N. V.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071010
.10.1115/1.4004493
69.
Pitzen
,
T.
,
Lane
,
C.
,
Goertzen
,
D.
,
Dvorak
,
M.
,
Fisher
,
C.
,
Barbier
,
D.
,
Steudel
,
W.-I.
, and
Oxland
,
T.
,
2003
, “
Anterior Cervical Plate Fixation: Biomechanical Effectiveness as a Function of Posterior Element Injury
,”
J. Neurosurg. Spine
,
99
(
1
), pp.
84
90
.10.3171/spi.2003.99.1.0084
70.
Kato
,
Y.
,
Kanchiku
,
T.
,
Imajo
,
Y.
,
Ichinara
,
K.
,
Kawano
,
S.
,
Hamanama
,
D.
,
Yaji
,
K.
, and
Taguchi
,
T.
,
2009
, “
Flexion Model Simulating Spinal Cord Injury Without Radiographic Abnormality in Patients With Ossification of the Longitudinal Ligament: The Influence of Flexion Speed on the Cervical Spine
,”
J. Spinal Cord Med.
,
32
(
5
), pp.
555
559
.10.1080/10790268.2009.11754557
71.
Atesok
,
K.
,
Tanaka
,
N.
,
O'Brien
,
A.
,
Robinson
,
Y.
,
Pang
,
D.
,
Deinlein
,
D.
,
Manoharan
,
S. R.
,
Pittman
,
J.
, and
Theiss
,
S.
,
2018
, “
Posttraumatic Spinal Cord Injury Without Radiographic Abnormality
,”
Adv. Orthop.
,
2018
, pp.
1
10
.10.1155/2018/7060654
72.
Mattucci
,
S.
,
Speidel
,
J.
,
Liu
,
J.
,
Kwon
,
B. K.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2019
, “
Basic Biomechanics of Spinal Cord Injury—How Injuries Happen in People and How Animal Models Have Informed Our Understanding
,”
Clin. Biomech.
,
64
, pp.
58
68
.10.1016/j.clinbiomech.2018.03.020
73.
Hilton
,
B. J.
,
Moulson
,
A. J.
, and
Tetzlaff
,
W.
,
2017
, “
Neuroprotection and Secondary Damage Following Spinal Cord Injury: Concepts and Methods
,”
Neurosci. Lett.
,
652
, pp.
3
10
.10.1016/j.neulet.2016.12.004
74.
Braakman
,
M.
, and
Braakman
,
R.
,
1987
, “
Hyperflexion Sprain of the Cervical Spine: Follow-Up of 45 Cases
,”
Acta Orthop. Scand.
,
58
(
4
), pp.
388
393
.10.3109/17453678709146362
75.
Kettler
,
A.
,
Hartwig
,
E.
,
Schultheiß
,
M.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2002
, “
Mechanically Simulated Muscle Forces Strongly Stabilize Intact and Injured Upper Cervical Spine Specimens
,”
J. Biomech.
,
35
(
3
), pp.
339
346
.10.1016/S0021-9290(01)00206-8
You do not currently have access to this content.