Abstract

This paper presents a knee brace design that applies an extension moment to unload the muscles in stance phase during gait, and thereby the knee, as alternative to conventional valgus braces for knee osteoarthritis patients. The concept was tested on one healthy subject during normal gait with a prototype, which was designed to activate and deactivate in order to apply the extension moment in the stance phase only and hereby avoid any interference during the swing phase. Electromyography measurements and musculoskeletal models were used to evaluate the brace effects on muscle activation and knee compressive forces, respectively. Simulations predicted an ideal reduction of up to 36%, whereas experimental tests revealed a reduction of up to 24% with the current prototype. The prototype brace also reduced the knee joint force impulse up to 9% and electromyography (EMG) peak signal of the vasti muscles with up to 19%. Due to these reductions on a healthy subject, this bracing approach seems promising for reducing knee loads during normal gait. However, further clinical experiments on knee osteoarthritis patients are required to evaluate the effect on both pain and disease progression.

References

1.
Amin
,
S.
,
LaValley
,
M. P.
,
Guermazi
,
A.
,
Grigoryan
,
M.
,
Hunter
,
D. J.
,
Clancy
,
M.
,
Niu
,
J.
,
Gale
,
D. R.
, and
Felson
,
D. T.
,
2005
, “
The Relationship Between Cartilage Loss on Magnetic Resonance Imaging and Radiographic Progression in Men and Women With Knee Osteoarthritis
,”
Arthritis Rheum.
,
52
(
10
), pp.
3152
3159
.10.1002/art.21296
2.
Silverwood
,
V.
,
Blagojevic-Bucknall
,
M.
,
Jinks
,
C.
,
Jordan
,
J. L.
,
Protheroe
,
J.
, and
Jordan
,
K. P.
,
2015
, “
Current Evidence on Risk Factors for Knee Osteoarthritis in Older Adults: A Systematic Review and Meta-Analysis
,”
Osteoarthritis Cartilage
,
23
(
4
), pp.
507
–5
15
.10.1016/j.joca.2014.11.019
3.
Fransen
,
M.
,
Mcconnell
,
S.
,
Harmer
,
A. R.
,
Van Der Esch
,
M.
,
Simic
,
M.
, and
Bennell
,
K. L.
,
2015
, “
Exercise for Osteoarthritis of the Knee (Review)
,”
Cochrane Libr.
,
49
(
24
), pp.
1
144
.10.1002/14651858.CD004376.pub3
4.
Neogi
,
T.
,
2013
, “
The Epidemiology and Impact of Pain in Osteoarthritis
,”
Osteoarthritis Cartilage
,
21
(
9
), pp.
1145
1153
.10.1016/j.joca.2013.03.018
5.
Gardiner
,
B. S.
,
Woodhouse
,
F. G.
,
Besier
,
T. F.
,
Grodzinsky
,
A. J.
,
Lloyd
,
D. G.
,
Zhang
,
L.
, and
Smith
,
D. W.
,
2016
, “
Predicting Knee Osteoarthritis
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
222
233
.10.1007/s10439-015-1393-5
6.
Dell'Isola
,
A.
,
Allan
,
R.
,
Smith
,
S. L.
,
Marreiros
,
S. S. P.
, and
Steultjens
,
M.
,
2016
, “
Identification of Clinical Phenotypes in Knee Osteoarthritis: A Systematic Review of the Literature
,”
BMC Musculoskelet. Disord.
,
17
(
1
), p.
425
.10.1186/s12891-016-1286-2
7.
Meireles
,
S.
,
De Groote
,
F.
,
Reeves
,
N. D.
,
Verschueren
,
S.
,
Maganaris
,
C.
,
Luyten
,
F.
, and
Jonkers
,
I.
,
2016
, “
Knee Contact Forces Are Not Altered in Early Knee Osteoarthritis
,”
Gait Posture
,
45
, pp.
115
120
.10.1016/j.gaitpost.2016.01.016
8.
Miyazaki
,
T.
,
Wada
,
M.
,
Kawahara
,
H.
,
Sato
,
M.
,
Baba
,
H.
, and
Shimada
,
S.
,
2002
, “
Dynamic Load at Baseline Can Predict Radiographic Disease Progression in Medial Compartment Knee Osteoarthritis
,”
Ann. Rheum. Dis.
,
61
(
7
), pp.
617
622
.10.1136/ard.61.7.617
9.
Andriacchi
,
T. P.
, and
Mündermann
,
A.
,
2006
, “
The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis
,”
Curr. Opin. Rheumatol.
,
18
(
5
), pp.
514
518
.10.1097/01.bor.0000240365.16842.4e
10.
Radin
,
E. L.
,
Burr
,
D. B.
,
Caterson
,
B.
,
Fyhrie
,
D.
,
Brown
,
T. D.
, and
Boyd
,
R. D.
,
1991
, “
Mechanical Determinants of Osteoarthrosis
,”
Semin. Arthritis Rheum.
,
21
(
3
), pp.
12
21
.10.1016/0049-0172(91)90036-Y
11.
Brooks
,
K. S.
,
2014
, “
Osteoarthritic Knee Braces on the Market: A Literature Review
,”
J. Prosthet. Orthot.
,
26
(
1
), pp.
2
30
.10.1097/JPO.0000000000000013
12.
Richard Steadman
,
J.
,
Briggs
,
K. K.
,
Pomeroy
,
S. M.
, and
Wijdicks
,
C. A.
,
2016
, “
Current State of Unloading Braces for Knee Osteoarthritis
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
24
(
1
), pp.
42
50
.10.1007/s00167-014-3305-x
13.
Gohal
,
C.
,
Shanmugaraj
,
A.
,
Tate
,
P.
,
Horner
,
N. S.
,
Bedi
,
A.
,
Adili
,
A.
, and
Khan
,
M.
,
2018
, “
Effectiveness of Valgus Offloading Knee Braces in the Treatment of Medial Compartment Knee Osteoarthritis: A Systematic Review
,”
Sports Health
,
10
(
6
), pp.
500
514
.10.1177/1941738118763913
14.
Petersen
,
W.
,
Ellermann
,
A.
,
Zantop
,
T.
,
Rembitzki
,
I. V.
,
Semsch
,
H.
,
Liebau
,
C.
, and
Best
,
R.
,
2016
, “
Biomechanical Effect of Unloader Braces for Medial Osteoarthritis of the Knee: A Systematic Review (CRD 42015026136
),”
Arch. Orthop. Trauma Surg.
,
136
(
5
), pp.
649
656
.10.1007/s00402-015-2388-2
15.
Dessery
,
Y.
,
Belzile
,
É. L.
,
Turmel
,
S.
, and
Corbeil
,
P.
,
2014
, “
Comparison of Three Knee Braces in the Treatment of Medial Knee Osteoarthritis
,”
Knee
,
21
(
6
), pp.
1107
1114
.10.1016/j.knee.2014.07.024
16.
Baliunas
,
A.
,
Hurwitz
,
D.
,
Ryals
,
A.
,
Karrar
,
A.
,
Case
,
J.
,
Block
,
J.
, and
Andriacchi
,
T.
,
2002
, “
Increased Knee Joint Loads During Walking Are Present in Subjects With Knee Osteoarthritis
,”
Osteoarthr. Cartil.
,
10
(
7
), pp.
573
579
.10.1053/joca.2002.0797
17.
Della Croce
,
U.
,
Crapanzano
,
F.
,
Li
,
L.
,
Kasi
,
P. K.
,
Patritti
,
B. L.
,
Mancinelli
,
C.
,
Hunter
,
D. J.
,
Stamenovic
,
D.
,
Harvey
,
W. F.
, and
Bonato
,
P.
,
2013
, “
A Preliminary Assessment of a Novel Pneumatic Unloading Knee Brace on the Gait Mechanics of Patients With Knee Osteoarthritis
,”
PM R
,
5
(
10
), pp.
816
824
.10.1016/j.pmrj.2013.06.008
18.
Ro
,
D. H.
,
Lee
,
D. Y.
,
Moon
,
G.
,
Lee
,
S.
,
Seo
,
S. G.
,
Kim
,
S. H.
,
Park
,
I. W.
, and
Lee
,
M. C.
,
2017
, “
Sex Differences in Knee Joint Loading: Cross-Sectional Study in Geriatric Population
,”
J. Orthop. Res.
,
35
(
6
), pp.
1283
1289
.10.1002/jor.23374
19.
Walter
,
J. P.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2010
, “
Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force During Gait
,”
J. Orthop. Res.
,
28
(
10
), pp.
1348
1354
.10.1002/jor.21142
20.
Meyer
,
A. J.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2013
, “
Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces During Gait?
,”
J. Orthop. Res.
,
31
(
6
), pp.
921
929
.10.1002/jor.22304
21.
Stoltze
,
J. S.
,
Rasmussen
,
J.
, and
Andersen
,
M. S.
,
2018
, “
On the Biomechanical Relationship Between Applied Hip, Knee and Ankle Joint Moments and the Internal Knee Compressive Forces
,”
Int. Biomech.
,
5
(
1
), pp.
63
74
.10.1080/23335432.2018.1499442
22.
Kumar
,
D.
,
Manal
,
K. T.
, and
Rudolph
,
K. S.
,
2013
, “
Knee Joint Loading During Gait in Healthy Controls and Individuals With Knee Osteoarthritis
,”
Osteoarthr. Cartil.
,
21
(
2
), pp.
298
305
.10.1016/j.joca.2012.11.008
23.
Miller
,
R. H.
,
Esterson
,
A. Y.
, and
Shim
,
J. K.
,
2015
, “
Joint Contact Forces When Minimizing the External Knee Adduction Moment by Gait Modification: A Computer Simulation Study
,”
Knee
,
22
(
6
), pp.
481
489
.10.1016/j.knee.2015.06.014
24.
Richards
,
R. E.
,
Andersen
,
M. S.
,
Harlaar
,
J.
, and
van den Noort
,
J. C.
,
2018
, “
Relationship Between Knee Joint Contact Forces and External Knee Joint Moments in Patients With Medial Knee Osteoarthritis: Effects of Gait Modifications
,”
Osteoarthr. Cartil.
,
26
(
9
), pp.
1203
1214
.10.1016/j.joca.2018.04.011
25.
Kutzner
,
I.
,
Küther
,
S.
,
Heinlein
,
B.
,
Dymke
,
J.
,
Bender
,
A.
,
Halder
,
A. M.
, and
Bergmann
,
G.
,
2011
, “
The Effect of Valgus Braces on Medial Compartment Load of the Knee Joint—In Vivo Load Measurements in Three Subjects
,”
J. Biomech.
,
44
(
7
), pp.
1354
1360
.10.1016/j.jbiomech.2011.01.014
26.
Herzog
,
W.
,
Longino
,
D.
, and
Clark
,
A.
,
2003
, “
The Role of Muscles in Joint Adaptation and Degeneration
,”
Langenbeck's Arch. Surg.
,
388
(
5
), pp.
305
315
.10.1007/s00423-003-0402-6
27.
Pratt
,
J. E.
,
Krupp
,
B. T.
,
Morse
,
C. J.
, and
Collins
,
S. H.
,
2004
, “
The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking
,” IEEE International Conference on Robotics and Automation Proceedings (
ICRA '04
), New Orleans, LA, Apr. 26–May 1, pp.
2430
2435
.10.1109/ROBOT.2004.1307425
28.
McGibbon
,
C. A.
,
Brandon
,
S. C. E.
,
Brookshaw
,
M.
, and
Sexton
,
A.
,
2017
, “
Effects of an Over-Ground Exoskeleton on External Knee Moments During Stance Phase of Gait in Healthy Adults
,”
Knee
,
24
(
5
), pp.
977
993
.10.1016/j.knee.2017.04.004
29.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance
,”
IEEE/ASME Trans. Mechatronics
,
22
(
4
), pp.
1695
1704
.10.1109/TMECH.2017.2704521
30.
Knaepen
,
K.
,
Beyl
,
P.
,
Duerinck
,
S.
,
Hagman
,
F.
,
Lefeber
,
D.
, and
Meeusen
,
R.
,
2014
, “
Human-Robot Interaction: Kinematics and Muscle Activity Inside a Powered Compliant Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
6
), pp.
1128
1137
.10.1109/TNSRE.2014.2324153
31.
Shamaei
,
K.
,
Adams
,
A. A.
,
Cenciarini
,
M.
,
Gregorczyk
,
K. N.
, and
Dollar
,
A. M.
,
2014
, “
Preliminary Investigation of Effects of a Quasi-Passive Knee Exoskeleton on Gait Energetics
,” 36th Annual International Conference IEEE Engineering in Medicine and Biology Society (
EMBC 2014
), Chicago, IL, Aug. 26–30, pp.
3061
3064
.10.1109/EMBC.2014.6944269
32.
Collo
,
A.
,
Bonnet
,
V.
, and
Venture
,
G.
,
2016
, “
A Quasi-Passive Lower Limb Exoskeleton for Partial Body Weight Support
,”
Proceedings of IEEE RAS EMBS International Conference for Biomedical Robotics and Biomechatronics
, Singapore, June 26–29, pp.
643
648
.10.1109/BIOROB.2016.7523698
33.
Rogers
,
E.
,
Polygerinos
,
P.
,
Allen
,
S.
,
Panizzolo
,
F. A.
,
Walsh
,
C. J.
, and
Holland
,
D. P.
,
2017
, “
A Quasi-Passive Knee Exoskeleton to Assist During Descent
,”
Biosyst. Biorobot.
,
16
, pp.
63
67
.10.1007/978-3-319-46532-6
34.
Elliott
,
G.
,
Sawicki
,
G. S.
,
Marecki
,
A.
, and
Herr
,
H.
,
2013
, “
The Biomechanics and Energetics of Human Running Using an Elastic Knee Exoskeleton
,”
IEEE Int. Conf. Rehabil. Robot.
,
(
4
).10.1109/ICORR.2013.6650418
35.
Van Dijk
,
W.
, and
Van Der Kooij
,
H.
,
2014
, “
XPED2: A Passive Exoskeleton With Artificial Tendons
,”
IEEE Robot. Autom. Mag.
,
21
(
4
), pp.
56
61
.10.1109/MRA.2014.2360309
36.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.10.1038/nature14288
37.
Trinler
,
U.
,
Schwameder
,
H.
,
Baker
,
R.
, and
Alexander
,
N.
,
2019
, “
Muscle Force Estimation in Clinical Gait Analysis Using AnyBody and OpenSim
,”
J. Biomech.
,
86
, pp.
55
63
.10.1016/j.jbiomech.2019.01.045
38.
Samaan
,
M. A.
,
Schwaiger
,
B. J.
,
Gallo
,
M. C.
,
Sada
,
K.
,
Link
,
T. M.
,
Zhang
,
A. L.
,
Majumdar
,
S.
, and
Souza
,
R. B.
,
2017
, “
Joint Loading in the Sagittal Plane During Gait is Associated With Hip Joint Abnormalities in Patients With Femoroacetabular Impingement
,”
Am. J. Sports Med.
,
45
(
4
), pp.
810
818
.10.1177/0363546516677727
39.
Shamaei
,
K.
,
Cenciarini
,
M.
,
Adams
,
A. A.
,
Gregorczyk
,
K. N.
,
Schiffman
,
J. M.
, and
Dollar
,
A. M.
,
2015
, “
Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking
,”
IEEE Trans. Biomed. Eng.
,
62
(
10
), pp.
2389
2401
.10.1109/TBME.2015.2428636
40.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
144
158
.10.1109/TRO.2008.915453
41.
Lee
,
K.
, and
Wang
,
D.
,
2015
, “
Design Analysis of a Passive Weight—Support Lower—Extremity—Exoskeleton With Compliant Knee—Joint
,” IEEE International Conference on Robotics and Automation (
ICRA
),
IEEE
, Seattle, WA, May 26–30, pp.
5572
5577
.10.1109/ICRA.2015.7139978
42.
Budarick
,
A. R.
,
MacKeil
,
B. E.
,
Fitzgerald
,
S.
, and
Cowper-Smith
,
C. D.
,
2020
, “
Design Evaluation of a Novel Multicompartment Unloader Knee Brace
,”
ASME J. Biomech. Eng.
,
142
(
1
), pp.
1
8
.10.1115/1.4044818
43.
McGibbon
,
C. A.
,
Brandon
,
S.
,
Bishop
,
E. L.
,
Cowper-Smith
,
C.
, and
Biden
,
E. N.
,
2021
, “
Biomechanical Study of a Tricompartmental Unloader Brace for Patellofemoral or Multicompartment Knee Osteoarthritis
,”
Front. Bioeng. Biotechnol.
,
8
, p. 1528.10.3389/fbioe.2020.604860
44.
Richards
,
J. D.
,
Sanchez-Ballester
,
J.
,
Jones
,
R. K.
,
Darke
,
N.
, and
Livingstone
,
B. N.
,
2005
, “
A Comparison of Knee Braces During Walking for the Treatment of Osteoarthritis of the Medial Compartment of the Knee
,”
J. Bone Jt. Surg. Br.
,
87-B
(
7
), pp.
937
939
.10.1302/0301-620X.87B7.16005
45.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model. Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
46.
Lund
,
M. E.
,
Tørholm
,
S.
, and
Jung
,
M.
,
2018
, “
The AnyBody Managed Model Repository (AMMR) v. 2.1.1
,” Zenodo, Geneva, Switzerland.10.5281/zenodo.1287730
47.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
,”
PLoS One
,
8
(
3
), p.
e59993
.10.1371/journal.pone.0059993
48.
Navacchia
,
A.
,
Myers
,
C. A.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
031002
.10.1115/1.4032379
49.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.10.1016/j.jbiomech.2009.10.048
50.
Hermens
,
H. J.
,
Freriks
,
B.
,
Disselhorst-Klug
,
C.
, and
Rau
,
G.
,
2000
, “
Development of Recommendations for SEMG Sensors and Sensor Placement Procedures
,”
J. Electromyogr. Kinesiol.
,
10
(
5
), pp.
361
374
.10.1016/S1050-6411(00)00027-4
51.
Hubley-Kozey
,
C. L.
,
Deluzio
,
K. J.
,
Landry
,
S. C.
,
Mcnutt
,
J. S.
, and
Stanish
,
W. D.
,
2006
, “
Neuromuscular Alterations During Walking in Persons With Moderate Knee Osteoarthritis
,”
J. Electromyogr. Kinesiol.
,
16
(
4
), pp.
365
378
.10.1016/j.jelekin.2005.07.014
52.
Hsu
,
W. L.
,
Krishnamoorthy
,
V.
, and
Scholz
,
J. P.
,
2006
, “
An Alternative Test of Electromyographic Normalization in Patients
,”
Muscle Nerve
,
33
(
2
), pp.
232
241
.10.1002/mus.20458
53.
Jung
,
Y.
,
Jung
,
M.
,
Lee
,
K.
, and
Koo
,
S.
,
2014
, “
Ground Reaction Force Estimation Using an Insole-Type Pressure Mat and Joint Kinematics During Walking
,”
J. Biomech.
,
47
(
11
), pp.
2693
2699
.10.1016/j.jbiomech.2014.05.007
54.
Fluit
,
R.
,
Andersen
,
M. S.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
55.
Jung
,
Y.
,
Jung
,
M.
,
Ryu
,
J.
,
Yoon
,
S.
,
Park
,
S.
, and
Koo
,
S.
,
2016
, “
Dynamically Adjustable Foot-Ground Contact Model to Estimate Ground Reaction Force During Walking and Running
,”
Gait Posture
,
45
, pp.
62
68
.10.1016/j.gaitpost.2016.01.005
56.
McGibbon
,
C. A.
, and
Mohamed
,
A.
,
2018
, “
Knee Load Reduction From an Energy Storing Mechanical Brace: A Simulation Study
,”
The 20th Biennial Meeting of the Canadian Society for Biomechanics
,
Halifax, Nova Scotia
, Aug. 14–17, p.
P067
.
57.
Salzman
,
A.
,
Torburn
,
L.
, and
Perry
,
J.
,
1993
, “
Contribution of Rectus Femoris and Vasti to Knee Extension: An Electromyographic Study
,”
Clin. Orthop. Relat. Res.
, (
290
), pp.
236
243
.https://pubmed.ncbi.nlm.nih.gov/8472454/
58.
Watanabe
,
K.
, and
Akima
,
H.
,
2011
, “
Validity of Surface Electromyography for Vastus Intermedius Muscle Assessed by Needle Electromyography
,”
J. Neurosci. Methods
,
198
(
2
), pp.
332
335
.10.1016/j.jneumeth.2011.03.014
59.
Eitzen
,
I.
,
Fernandes
,
L.
,
Kalleru
,
H.
,
Nordsletten
,
L.
,
Knarr
,
B.
, and
Risberg
,
M. A.
,
2015
, “
Gait Characteristics, Symptoms, and Function in Persons With Hip Osteoarthritis: A Longitudinal Study With 6 to 7 Years of Follow-Up
,”
J. Orthop. Sports Phys. Ther.
,
45
(
7
), pp.
539
549
.10.2519/jospt.2015.5441
60.
Fukui
,
T.
,
Ueda
,
Y.
, and
Kamijo
,
F.
,
2016
, “
Ankle, Knee, and Hip Joint Contribution to Body Support During Gait
,”
J. Phys. Ther. Sci.
,
28
(
10
), pp.
2834
2837
.10.1589/jpts.28.2834
61.
Karavas
,
N.
,
Ajoudani
,
A.
,
Tsagarakis
,
N.
,
Saglia
,
J.
,
Bicchi
,
A.
, and
Caldwell
,
D.
,
2015
, “
Tele-Impedance Based Assistive Control for a Compliant Knee Exoskeleton
,”
Rob. Auton. Syst.
,
73
, pp.
78
90
.10.1016/j.robot.2014.09.027
62.
Hassani
,
W.
,
Mohammed
,
S.
,
Rifai
,
H.
, and
Amirat
,
Y.
,
2013
, “
EMG Based Approach for Wearer-Centered Control of a Knee Joint Actuated Orthosis
,”
IEEE International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
990
995
.10.1109/IROS.2013.6696471
63.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. Humanoid Robot.
,
04
(
03
), pp.
487
506
.10.1142/S0219843607001126
64.
Serrancoli
,
G.
,
Falisse
,
A.
,
Dembia
,
C.
,
Vantilt
,
J.
,
Tanghe
,
K.
,
Lefeber
,
D.
,
Jonkers
,
I.
,
De Schutter
,
J.
, and
De Groote
,
F.
,
2019
, “
Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
8
), p.
1597
.10.1109/TNSRE.2019.2924536
65.
Marra
,
M. A.
,
Vanheule
,
V.
,
Rasmussen
,
J.
,
Verdonschot
,
N. J. J.
,
Andersen
,
M. S.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J., M.
Rasmussen
,
J.
,
Verdonschot
,
N. J. J.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.10.1115/1.4029258
66.
Cherian
,
J. J.
,
Bhave
,
A.
,
Kapadia
,
B. H.
,
Starr
,
R.
,
Mcelroy
,
M. J.
, and
Mont
,
M. A.
,
2015
, “
Strength and Functional Improvement Using Pneumatic Brace With Extension Assist for End-Stage Knee Osteoarthritis : A Prospective, Randomized Trial
,”
J. Arthroplasty
,
30
(
5
), pp.
747
753
.10.1016/j.arth.2014.11.036
67.
Bennell
,
K. L.
,
Bowles
,
K. A.
,
Wang
,
Y.
,
Cicuttini
,
F.
,
Davies-Tuck
,
M.
, and
Hinman
,
R. S.
,
2011
, “
Higher Dynamic Medial Knee Load Predicts Greater Cartilage Loss Over 12 Months in Medial Knee Osteoarthritis
,”
Ann. Rheum. Dis.
,
70
(
10
), pp.
1770
1774
.10.1136/ard.2010.147082
68.
Kean
,
C. O.
,
Hinman
,
R. S.
,
Bowles
,
K. A.
,
Cicuttini
,
F.
,
Davies-Tuck
,
M.
, and
Bennell
,
K. L.
,
2012
, “
Comparison of Peak Knee Adduction Moment and Knee Adduction Moment Impulse in Distinguishing Between Severities of Knee Osteoarthritis
,”
Clin. Biomech.
,
27
(
5
), pp.
520
523
.10.1016/j.clinbiomech.2011.12.007
69.
Thorp
,
L. E.
,
Sumner
,
D. R.
,
Block
,
J. A.
,
Moisio
,
K. C.
,
Shott
,
S.
, and
Wimmer
,
M. A.
,
2006
, “
Knee Joint Loading Differs in Individuals With Mild Compared With Moderate Medial Knee Osteoarthritis
,”
Arthritis Rheum.
,
54
(
12
), pp.
3842
3849
.10.1002/art.22247
70.
Shamaei
,
K.
,
Cenciarini
,
M.
,
Adams
,
A. A.
,
Gregorczyk
,
K. N.
,
Schiffman
,
J. M.
, and
Dollar
,
A. M.
,
2015
, “
Effects of Exoskeletal Stiffness in Parallel With the Knee on the Motion of the Human Body Center of Mass During Walking
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, Seattle, WA, May 26–30, pp.
5557
5564
.
71.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), pp.
1
24
.10.1115/1.4029304
72.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.10.1016/S0021-9290(00)00191-3
73.
Ackland
,
D. C.
,
Lin
,
Y. C.
, and
Pandy
,
M. G.
,
2012
, “
Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle-Tendon Properties: A Monte Carlo Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1463
1471
.10.1016/j.jbiomech.2012.02.023
74.
Hirschmann
,
M. T.
, and
Müller
,
W.
,
2015
, “
Complex Function of the Knee Joint: The Current Understanding of the Knee
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
23
(
10
), pp.
2780
2788
.10.1007/s00167-015-3619-3
75.
Skals
,
S.
,
Jung
,
M. K.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Prediction of Ground Reaction Forces and Moments During Sports-Related Movements
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
175
195
.10.1007/s11044-016-9537-4
76.
Ghadikolaee
,
M. S.
,
Sharifmoradi
,
K.
,
Karimi
,
M. T.
, and
Tafti
,
N.
,
2020
, “
Evaluation of a Functional Brace in Acl-Deficient Subjects Measuring Ground Reaction Forces and Contact Pressure: A Pilot Study
,”
J. Prosthet. Orthot.
,
32
(
2
), pp.
142
148
.10.1097/JPO.0000000000000302
You do not currently have access to this content.