Abstract

The mechanical properties of an ankle-foot orthosis (AFO) can impact how a user's movement is either restricted or augmented by the device. However, standardized methods for assessing stiffness properties of AFOs are lacking, posing a challenge for comparing between devices and across vendors. Therefore, the purpose of this study was to quantify the rotational stiffness of thirteen commercial, nonarticulated, carbon composite ankle-foot orthoses. A custom, instrumented test fixture, for evaluating mechanical properties in rotating exoskeletons (EMPIRE), deflected an AFO through 20 deg of plantar/dorsiflexion motion about a specified, but adjustable, ankle axis. Sagittal, frontal, and transverse plane rotational stiffness were calculated, and reliability was assessed between cycles, sessions, and testers. The EMPIRE demonstrated good-to-excellent reliability between testers, sessions, and cycles (intraclass correlation coefficients all ≥0.95 for sagittal plane stiffness measures). Sagittal plane AFO stiffness ranged from 0.58 N·m/deg to 3.66 N·m/deg. AFOs with a lateral strut demonstrated frontal plane stiffnesses up to 0.71 N·m/deg of eversion while those with a medial strut demonstrated frontal plane stiffnesses up to 0.53 N·m/deg of inversion. Transverse plane stiffnesses were less than 0.30 N·m/deg of internal or external rotation. These results directly compare AFOs of different models and from different manufacturers using consistent methodology and are intended as a resource for clinicians in identifying a device with stiffness properties for individual patients.

References

1.
Sumiya
,
T.
,
Suzuki
,
Y.
, and
Kasahara
,
T.
,
1996
, “
Stiffness Control in Posterior-Type Plastic Ankle-Foot Orthoses: Effect of Ankle Trimline Part 2: Orthosis Characteristics and Orthosis/Patient Matching
,”
Prosthet. Orthot. Int.
,
20
(
2
), pp.
132
137
.10.3109/03093649609164431
2.
Bregman
,
D. J. J.
,
De Groot
,
V.
,
Van Diggele
,
P.
,
Meulman
,
H.
,
Houdijk
,
H.
, and
Harlaar
,
J.
,
2010
, “
Polypropylene Ankle Foot Orthoses to Overcome Drop-Foot Gait in Central Neurological Patients: A Mechanical and Functional Evaluation
,”
Prosthet. Orthot. Int.
,
34
(
3
), pp.
293
304
.10.3109/03093646.2010.495969
3.
Kobayashi
,
T.
,
Leung
,
A. K. L.
, and
Hutchins
,
S. W.
,
2011
, “
Design of a Manual Device to Measure Ankle Joint Stiffness and Range of Motion
,”
Prosthet. Orthot. Int.
,
35
(
4
), pp.
478
481
.10.1177/0309364611425696
4.
Mchugh
,
B.
,
1999
, “
Analysis of Body-Device Interface Forces in the Sagittal Plane for Patients Wearing Ankle-Foot Orthoses
,”
Prosthet. Orthot. Int.
,
23
(
1
), pp.
75
81
.10.3109/03093649909071615
5.
Vasiliauskaite
,
E.
,
Ielapi
,
A.
,
De Beule
,
M.
,
Van Paepegem
,
W, B.
,
Deckers
,
J. P.
,
Vermandel
,
M.
,
Forward
,
M.
, and
Plasschaert
,
F.
,
2021
, “
A Study on the Efficacy of AFO Stiffness Prescriptions
,”
Disabil. Rehabil. Assist. Technol.
, 16(1), pp. 27–39
.10.1080/17483107.2019.1629114
6.
Zou
,
D.
,
He
,
T.
,
Dailey
,
M.
,
Smith
,
K. E.
,
Silva
,
M. J.
,
Sinacore
,
D. R.
,
Mueller
,
M. J.
, and
Hastings
,
M. K.
,
2014
, “
Experimental and Computational Analysis of Composite Ankle-Foot Orthosis
,”
J. Rehabil. Res. Dev.
,
51
(
10
), pp.
1525
1536
.10.1682/JRRD.2014-02-0046
7.
Totah
,
D.
,
Menon
,
M.
,
Jones-Hershinow
,
C.
,
Barton
,
K.
, and
Gates
,
D. H.
,
2019
, “
The Impact of Ankle-Foot Orthosis Stiffness on Gait: A Systematic Literature Review
,”
Gait Posture
,
69
, pp.
101
111
.10.1016/j.gaitpost.2019.01.020
8.
Bregman
,
D. J. J.
,
Harlaar
,
J.
,
Meskers
,
C. G. M.
, and
De Groot
,
V.
,
2012
, “
Spring-Like Ankle Foot Orthoses Reduce the Energy Cost of Walking by Taking Over Ankle Work
,”
Gait Posture
,
35
(
1
), pp.
148
153
.10.1016/j.gaitpost.2011.08.026
9.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.10.1038/nature14288
10.
Ridgewell
,
E.
,
Dobson
,
F.
,
Bach
,
T.
, and
Baker
,
R.
,
2010
, “
A Systematic Review to Determine Best Practice Reporting Guidelines for AFO Interventions in Studies Involving Children With Cerebral Palsy
,”
Prosthet. Orthot. Int.
,
34
(
2
), pp.
129
145
.10.3109/03093641003674288
11.
Ielapi
,
A.
,
Forward
,
M.
, and
De Beule
,
M.
,
2019
, “
Computational and Experimental Evaluation of the Mechanical Properties of Ankle Foot Orthoses: A Literature Review
,”
Prosthet. Orthot. Int.
,
43
(
3
), pp.
339
348
.10.1177/0309364618824452
12.
Kobayashi
,
T.
,
Leung
,
A. K. L.
, and
Hutchins
,
S. W.
,
2011
, “
Techniques to Measure Rigidity of Ankle-Foot Orthosis: A Review
,”
J. Rehabil. Res. Dev.
,
48
(
5
), pp.
565
576
.10.1682/JRRD.2010.10.0193
13.
Harper
,
N. G.
,
Russell Esposito
,
E.
,
Wilken
,
J. M.
, and
Neptune
,
R. R.
,
2014
, “
The Influence of Ankle-Foot Orthosis Stiffness on Walking Performance in Individuals With Lower-Limb Impairments
,”
Clin. Biomech.
,
29
(
8
), pp.
877
884
.10.1016/j.clinbiomech.2014.07.005
14.
Haight
,
D. J.
,
Russell Esposito
,
E.
, and
Wilken
,
J. M.
,
2015
, “
Biomechanics of Uphill Walking Using Custom Ankle-Foot Orthoses of Three Different Stiffnesses
,”
Gait Posture
,
41
(
3
), pp.
750
756
.10.1016/j.gaitpost.2015.01.001
15.
Russell Esposito
,
E.
,
Choi
,
H. S.
,
Owens
,
J. G.
,
Blanck
,
R. V.
, and
Wilken
,
J. M.
,
2015
, “
Biomechanical Response to Ankle–Foot Orthosis Stiffness During Running
,”
Clin. Biomech.
,
30
(
10
), pp.
1125
1132
.10.1016/j.clinbiomech.2015.08.014
16.
Russell Esposito
,
E.
,
Blanck
,
R. V.
,
Harper
,
N. G.
,
Hsu
,
J. R.
, and
Wilken
,
J. M.
,
2014
, “
How Does Ankle-Foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?
,”
Clin. Orthop. Relat. Res.
,
472
(
10
), pp.
3026
3035
.10.1007/s11999-014-3661-3
17.
Wach
,
A.
,
Mcgrady
,
L.
,
Wang
,
M.
, and
Silver-Thorn
,
B.
,
2018
, “
Assessment of Mechanical Characteristics of Ankle-Foot Orthoses
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
071007
.10.1115/1.4039816
18.
Bregman
,
D. J. J.
,
Rozumalski
,
A.
,
Koops
,
D.
,
De Groot
,
V.
,
Schwartz
,
M.
, and
Harlaar
,
J.
,
2009
, “
A New Method for Evaluating Ankle Foot Orthosis Characteristics: BRUCE
,”
Gait Posture
,
30
(
2
), pp.
144
149
.10.1016/j.gaitpost.2009.05.012
19.
Ielapi
,
A.
,
Vasiliauskaite
,
E.
,
Hendrickx
,
M.
,
Forward
,
M.
,
Lammens
,
N.
,
Van Paepegem
,
W.
,
Deckers
,
J. P.
,
Vermandel
,
M.
, and
De Beule
,
M.
,
2018
, “
A Novel Experimental Setup for Evaluating the Stiffness of Ankle Foot Orthoses
,”
BMC Res. Notes
,
11
(
649
), pp.
1
7
.10.1186/s13104-018-3752-4
20.
Gao
,
F.
,
Carlton
,
W.
, and
Kapp
,
S.
,
2011
, “
Effects of Joint Alignment and Type on Mechanical Properties of Thermoplastic Articulated Ankle-Foot Orthosis
,”
Prosthet. Orthot. Int.
,
35
(
2
), pp.
181
189
.10.1177/0309364611409617
21.
Gao
,
F.
,
Carlton
,
W.
, and
Kapp
,
S.
,
2010
, “
Development of a Motorized Device for Quantitative Investigation of Articulated AFO Misalignment
,”
Fourth International Conference on Bioinformatics and Biomedical Engineering
,
IEEE
, Chengdu, China, June 18–20, pp.
1
4
.10.1109/ICBBE.2010.5514982
22.
Knapp
,
D.
,
2019
, “
Dynamic Characteristics of Fitted AFO's
,”
Acad. Today
,
15
(
4
), pp.
9
11
.
23.
Takahashi
,
K. Z.
, and
Stanhope
,
S. J.
,
2010
, “
Estimates of Stiffness for Ankle-Foot Orthoses Are Sensitive to Loading Conditions
,”
J. Prosthet. Orthot.
,
22
(
4
), pp.
211
219
.10.1097/JPO.0b013e3181f46822
24.
Totah
,
D.
,
Menon
,
M.
,
Gates
,
D. H.
, and
Barton
,
K.
,
2021
, “
Design and Evaluation of the SMApp: A Stiffness Measurement Apparatus for Ankle–Foot Orthoses
,”
Mechatronics
,
77
, p.
102572
.10.1016/j.mechatronics.2021.102572
25.
Schrank
,
E. S.
,
Hitch
,
L.
,
Wallace
,
K.
,
Moore
,
R.
, and
Stanhope
,
S. J.
,
2013
, “
Assessment of a Virtual Functional Prototyping Process for the Rapid Manufacture of Passive-Dynamic Ankle-Foot Orthoses
,”
ASME J. Biomech. Eng.
,
135
(
10
), p. 101011.10.1115/1.4024825
26.
Cappa
,
P.
,
Patane
,
F.
, and
Pierro
,
M. M.
,
2003
, “
A Novel Device to Evaluate the Stiffness of Ankle-Foot Orthosis Devices
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
913
917
.10.1115/1.1634993
27.
Cappa
,
P.
,
Patane
,
F.
, and
Di Rosa
,
G.
,
2005
, “
A Continuous Loading Apparatus for Measuring Three-Dimensional Stiffness of Ankle-Foot Orthoses
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
1025
1029
.10.1115/1.2049313
28.
Singerman
,
R.
,
Hoy
,
D. J.
, and
Mansour
,
J. M.
,
1999
, “
Design Changes in Ankle Foot Orthosis Intended to Alter Stiffness Also Alther Orthosis Kinematics
,”
J. Prosthet. Orthot.
,
11
(
3
), pp.
48
55
.10.1097/00008526-199901130-00002
29.
Tanino
,
G.
,
Tomita
,
Y.
,
Mizuno
,
S.
,
Maeda
,
H.
,
Miyasaka
,
H.
,
Abbas
,
O.
,
Takeda
,
K.
, and
Sonoda
,
S.
,
2015
, “
Development of an Ankle Torque Measurement Device for Measuring Ankle Torque During Walking
,”
J. Phys. Ther. Sci.
,
27
(
5
), pp.
1477
1480
.10.1589/jpts.27.1477
30.
Yamamoto
,
S.
,
Ebina
,
M.
,
Iwasaki
,
M.
,
Kubo
,
S.
,
Kawai
,
H.
, and
Hayashi
,
T.
,
1993
, “
Comparative Study of Mechanical Characteristics of Plastic AFOs
,”
J. Prosthet. Orthot.
,
5
(
2
), pp.
59
64
.https://journals.lww.com/jpojournal/Citation/1993/04000/Gait_Abnormalities_in_Children.13.aspx
31.
Ringleb
,
S. I.
,
Armstrong
,
T.
,
Berglund
,
L. J.
,
Kitaoka
,
H. B.
, and
Kaufman
,
K. R.
,
2009
, “
Stiffness of the Arizona Ankle-Foot Orthosis Before and After Modification for Gait Analysis
,”
J. Prosthet. Orthot.
,
21
(
4
), pp.
204
207
.10.1097/JPO.0b013e3181bfb28e
32.
Bielby
,
S. A.
,
Warrick
,
T. J.
,
Benson
,
D.
,
Brooks
,
R. E.
,
Skewes
,
E.
,
Alvarez
,
E.
,
Dunning
,
C.
, and
Desjardins
,
J. D.
,
2010
, “
Trimline Severity Significantly Affects Rotational Stiffness of Ankle-Foot Orthosis
,”
J. Prosthet. Orthot.
,
22
(
4
), pp.
204
210
.10.1097/JPO.0b013e3181f9082e
33.
Klasson
,
B.
,
Convery
,
P.
, and
Raschke
,
S.
,
1998
, “
Test Apparatus for the Measurement of the Flexibility of Ankle-Foot Orthoses in Planes Other Than the Loaded Plane
,”
Prosthet. Orthot. Int.
,
22
(
1
), pp.
45
53
.10.3109/03093649809164456
34.
AllardUSA
, “
Allard Functional Guidelines Poster
,” Allard USA Inc., Rockaway, NJ, accessed Oct. 27, 2020, https://www.allardusa.com/Allard USA/Foot Drop AFOs/General PDFs/FunctionalGuideLines_Poster_Allard USA_April2020_www.pdf
35.
Thuasne
,
2018
, “
SpryStep-Plus-Max Info Sheet
,” Townsend/Thuasne USA, Bakersfield, CA, pp.
1
23
, accessed Oct. 27, 2020, https://www.pelsupply.com/static/related_files/6165/SpryStep-Plus-Max_Info Sheet PEL.pdf
36.
Ottobock
,
2015
, “
Ottobock Stroke Indication Matrix -Lower Limbs
,” Ottobock, Duderstadt, Germany, Report No. 646F340-EN-03-1405w, p.
1
, accessed Oct. 27, 2020, https://shop.ottobock.us/media/pdf/646F340-EN-03-1405w.pdf
37.
Fabtech Systems,
2018
, “
PDETM Modular Composite Spring System
,” Fabtech System, Everett, WA, pp.
1
2
, accessed Oct. 27,
2020
, https://www.fabtechsystems.com/skin1/images/pdfs/PDE-InfoSheet-2018-web.pdf
38.
Golay
,
W.
,
Lunsford
,
T. R.
,
Lunsford
,
B. R.
, and
Greenfield
,
J.
,
1989
, “
The Effect of Malleolar Prominence on Polypropylene AFO Rigidity and Buckling
,”
J. Prosthet. Orthot.
,
1
(
4
), pp.
231
241
.10.1097/00008526-198907000-00007
39.
Ielapi
,
A.
,
Lammens
,
N.
,
Van Paepegem
,
W.
,
Forward
,
M.
,
Deckers
,
J. P.
,
Vermandel
,
M.
, and
De Beule
,
M.
,
2019
, “
A Validated Computational Framework to Evaluate the Stiffness of 3D Printed Ankle Foot Orthoses
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
8
), pp.
880
887
.10.1080/10255842.2019.1601712
40.
Kerkum
,
Y. L.
,
Brehm
,
M.-A.
,
Buizer
,
A. I.
,
van den Noort
,
J. C.
,
Becher
,
J. G.
, and
Harlaar
,
J.
,
2014
, “
Defining the Mechanical Properties of a Spring-Hinged Ankle Foot Orthosis to Assess Its Potential Use in Children With Spastic Cerebral Palsy
,”
J. Appl. Biomech.
,
30
(
6
), pp.
728
731
.10.1123/jab.2014-0046
41.
Kerkum
,
Y. L.
,
Buizer
,
A. I.
,
van den Noort
,
J. C.
,
Becher
,
J. G.
,
Harlaar
,
J.
, and
Brehm
,
M.-A.
,
2015
, “
The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children With Spastic Cerebral Palsy Who Walk With Excessive Knee Flexion
,”
PLoS One
,
10
(
11
), p.
e0142878
.10.1371/journal.pone.0142878
42.
Ploeger
,
H. E.
,
Brehm
,
M. A.
,
Bus
,
S. A.
, and
Nollet
,
F.
,
2015
, “
Comparing the Effect of a Dorsal-Leaf-Spring AFO and a Spring-Hinged AFO on Gait Characteristics in Plantarflexor Weakness – A Pilot Study
,”
Gait Posture
,
42
(
S3
), p.
S70
.10.1016/j.gaitpost.2015.03.121
43.
Kobayashi
,
T.
,
Leung
,
A. K. L.
,
Akazawa
,
Y.
,
Naito
,
H.
,
Tanaka
,
M.
, and
Hutchins
,
S. W.
,
2010
, “
Design of an Automated Device to Measure Sagittal Plane Stiffness of an Articulated Ankle-Foot Orthosis
,”
Prosthet. Orthot. Int.
,
34
(
4
), pp.
439
448
.10.3109/03093646.2010.495370
44.
Waterval
,
N. F. J.
,
Nollet
,
F.
,
Harlaar
,
J.
, and
Brehm
,
M.-A.
,
2019
, “
Modifying Ankle Foot Orthosis Stiffness in Patients With Calf Muscle Weakness : Gait Responses on Group and Individual Level
,”
J. Neuroeng. Rehabil.
,
16
(
120
), pp.
1
9
.10.1186/s12984-019-0600-2
45.
Sheehan
,
C.
, and
Figgins
,
E.
,
2017
, “
A Comparison of Mechanical Properties Between Different Percentage Layups of a Single-Style Carbon Fibre Ankle Foot Orthosis
,”
Prosthet. Orthot. Int.
,
41
(
4
), pp.
364
372
.10.1177/0309364616652015
46.
Brockett
,
C. L.
, and
Chapman
,
G. J.
,
2016
, “
Biomechanics of the Ankle
,”
Orthop. Trauma
,
30
(
3
), pp.
232
238
.10.1016/j.mporth.2016.04.015
47.
The Brannock Device Co., I.
,
2015
, “
Brannock Device Conversion Chart
,” The Brannock Device Co., Liverpool, NY, accessed Oct. 27, 2020, https://brannock.com/pages/conversion-chart
48.
White
,
R. M.
,
1982
,
Comparative Anthropometry of the Foot
, United States Army Natick Research and Development Laboratories,
Natick, MA
.
49.
Parham
,
K. R.
,
Gordon
,
C. C.
, and
Bensel
,
C. K.
,
1992
,
Anthropometry of the Foot and Lower Leg of U.S. Army Soldiers
, United States Army Natick Research and Development Laboratories,
Fort Jackson, SC,
1985,
Natick, MA
.
50.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropr. Med.
,
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
51.
Weir
,
J. P.
,
2005
, “
Quantifying Test-Retest Reliability Using the Interclass Correlation Coefficient and the SEM
,”
J. Strength Cond. Res.
,
19
(
1
), pp.
231
240
.10.1519/15184.1
52.
Belingardi
,
G.
,
Cavatorta
,
M. P.
, and
Frasca
,
C.
,
2006
, “
Bending Fatigue Behavior of Glass-Carbon/Epoxy Hybrid Composites
,”
Compos. Sci. Technol.
,
66
(
2
), pp.
222
232
.10.1016/j.compscitech.2005.04.031
53.
Novacheck
,
T. F.
,
Beattie
,
C.
,
Rozumalski
,
A.
,
Gent
,
G.
, and
Kroll
,
G.
,
2007
, “
Quantifying the Spring-Like Properties of Ankle-Foot Orthoses (AFOs)
,”
J. Prosthetics Orthot.
,
19
(
4
), pp.
98
103
.10.1097/JPO.0b013e31812e555e
54.
AllardUSA,
Allard AFO Professional Instructions
,” Allard USA Inc., Rockaway, NJ, accessed Oct. 28, 2020, https://www.allardusa.com/Allard USA/Foot Drop AFOs/General PDFs/Allard AFO Professional Instructions - E110.pdf
55.
Totah
,
D.
,
Barton
,
K.
, and
Gates
,
D. H.
,
2021
, “
The Effect of Rotational Speed on Ankle-Foot Orthosis Properties
,”
J. Biomech.
,
123
, p.
110483
.10.1016/j.jbiomech.2021.110483
56.
Polliack
,
A. A.
,
Swanson
,
C.
,
Landsberger
,
S. E.
, and
McNeal
,
D. R.
,
2001
, “
Development of a Testing Apparatus for Structural Stiffness Evaluation of Ankle-Foot Orthoses
,”
Prosthet. Orthotic Sci.
,
13
(
3
), pp.
74
82
.10.1097/00008526-200109000-00012
You do not currently have access to this content.