Abstract

Foot injuries as a result of automotive collisions are frequent and impactful. Anthropomorphic test devices (ATDs), used to assess injury risk during impact scenarios such as motor vehicle collisions, typically assess risk of foot/ankle injuries by analyzing data in tibia load cells. The peak axial force and the tibia index are metrics commonly used to evaluate risk of injury to the lower extremity but do not directly account for injury risk to the foot, or the risk of injury associated with out-of-position loading. Two ATDs, the Hybrid III lower leg and the Military Lower Extremity, were exposed to axial impacts at seven different ankle postures. An array of piezoresistive sensors located on the insole of a boot was employed during these tests to assess the load distribution variations among postures and between ATD models on the plantar surface of the foot. Both posture and ATD model affected the load distribution on the foot, highlighting the need for regional injury risk assessments in this vulnerable anatomical region. The increase in forefoot loading during plantarflexion was not reflected in the standard industry metrics of peak axial force or tibia index, suggesting that increased fracture risk to the forefoot would not be detected. The variations in load distribution between the models could also alter injury risk assessment in frontal collisions based on differences in attenuation. These data could be used for regional foot injury assessment and to inform the design of an improved ATD foot.

References

1.
Yoganandan
,
N.
,
Nahum
,
A. M.
, and
Melvin
,
J. W.
, eds.,
2015
,
Accidental Injury: Biomechanics and Prevention
, 3rd ed.,
Springer Science+Business Media
, New York.
2.
Funk
,
J. R.
,
Crandall
,
J. R.
,
Tourret
,
L. J.
,
MacMahon
,
C. B.
,
Bass
,
C. R.
,
Patrie
,
J. T.
,
Khaewpong
,
N.
, and
Eppinger
,
R. H.
,
2002
, “
The Axial Injury Tolerance of the Human Foot/Ankle Complex and the Effect of Achilles Tension
,”
ASME J. Biomech. Eng.
,
124
(
6
), pp.
750
757
.10.1115/1.1514675
3.
Insurance Institute for Highway Safety,
2014
, “
Moderate Overlap Frontal Crashworthiness Evaluation - Guidelines for Rating Injury Measures
,” Insurance Institute for Highway Safety, Ruckersville, VA, Report.
4.
Grigoriadis
,
G.
,
Carpanen
,
D.
,
Webster
,
C. E.
,
Ramasamy
,
A.
,
Newell
,
N.
, and
Masouros
,
S. D.
,
2019
, “
Lower Limb Posture Affects the Mechanism of Injury in Under-Body Blast
,”
Ann. Biomed. Eng.
,
47
(
1
), pp.
306
316
.10.1007/s10439-018-02138-4
5.
Van Tuyl
,
J.
,
Burkhart
,
T. A.
, and
Quenneville
,
C. E.
,
2016
, “
Effect of Posture on Forces and Moments Measured in a Hybrid III ATD Lower Leg
,”
Traffic Inj. Prev.
,
17
(
4
), pp.
381
385
.10.1080/15389588.2015.1089356
6.
McKay
,
B. J.
,
2010
, “
Development of Lower Extremity Injury Criteria and Biomechanical Surrogate to Evaluate Military Vehicle Occupant Injury During an Explosive Blast Event
,”
Ph.D. dissertation, Biomedical Engineering, Wayne State University, Detroit, MI
.
7.
Mckay
,
B. J.
, and
Bir
,
C. A.
,
2009
, “
Lower Extremity Injury Criteria for Evaluating Military Vehicle Occupant Injury in Underbelly Blast Events
,”
Stapp Car Crash J.
,
53
, pp.
229
249
.https://pubmed.ncbi.nlm.nih.gov/20058557/
8.
Quenneville
,
C. E.
, and
Dunning
,
C. E.
,
2012
, “
Evaluation of the Biofidelity of the HIII and MIL-Lx Lower Leg Surrogates Under Axial Impact Loading
,”
Traffic Inj. Prev.
,
13
(
1
), pp.
81
85
.10.1080/15389588.2011.623251
9.
Quenneville
,
C. E.
,
Fournier
,
E.
, and
Shewchenko
,
N.
,
2017
, “
The Effect of Anthropomorphic Test Device Lower Leg Surrogate Selection on Impact Mitigating System Evaluation in Low- and High-Rate Loading Conditions
,”
Mil. Med.
,
182
(
9
), pp.
e1981
e1986
.10.7205/MILMED-D-16-00358
10.
Pandelani, T. A., Reinecke
,
J. D.
, and
Beetge
,
F.
,
2010
, “
In Pursuit of Vehicle Landmine Occupant Protection: Evaluating the Dynamic Response Characteristic of the Military Lower Extremity Leg (MiL-Lx) Compared to the Hybrid III (HIII) Lower Leg
,” CSIR Third Biennial Conference 2010, Pretoria, South Africa, Sept. 1, Paper No. DS04-PA-F.
11.
Yoganandan
,
N.
,
Arun
,
M. W.
,
Pintar
,
F. A.
, and
Szabo
,
A.
,
2014
, “
Optimized Lower Leg Injury Probability Curves From Postmortem Human Subject Tests Under AxialImpacts
,”
Traffic Inj. Prev.
,
9588
(
15
), pp.
S151
S156
.10.1080/15389588.2014.935357
12.
Behr
,
M.
,
Poumarat
,
G.
,
Serre
,
T.
,
Arnoux
,
P. J.
,
Thollon
,
L.
, and
Brunet
,
C.
,
2010
, “
Posture and Muscular Behaviour in Emergency Braking: An Experimental Approach
,”
Accid. Anal. Prev.
,
42
(
3
), pp.
797
801
.10.1016/j.aap.2009.04.010
13.
Crandall
,
J. R.
,
Kuppa
,
S. M.
,
Klopp
,
G. S.
,
Hall
,
G. W.
,
Pilkey
,
W. D.
, and
Hurwitz
,
S. R.
,
1998
, “
Injury Mechanisms and Criteria for the Human Foot and Ankle Under Axial Impacts to the Foot
,”
Int. J. Crashworthiness
,
3
(
2
), pp.
147
162
.10.1533/cras.1998.0068
14.
Smolen
,
C.
, and
Quenneville
,
C. E.
,
2016
, “
The Effect of Ankle Posture on the Load Pathway Through the Hindfoot
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
230
(
11
), pp.
1024
1035
.10.1177/0954411916670423
15.
Pietsch
,
H. A.
, and
Weyland
,
D. R.
,
2018
, “
Warrior Injury Assessment Manikin Oblique Vertical Testing
,”
SAE
Paper No. SC18-22-0008. 10.4271/SC18-22-0008
16.
Bir
,
C.
,
Barbir
,
A.
,
Dosquet
,
F.
,
Wilhelm
,
M.
,
van der Horst
,
M.
, and
Wolfe
,
G.
,
2008
, “
Validation of Lower Limb Surrogates as Injury Assessment Tools in Floor Impacts Due to Anti-Vehicular Land Mines
,”
Mil. Med.
,
173
(
12
), pp.
1180
4
.10.7205/MILMED.173.12.1180
17.
Acharya
,
I.
,
Van Tuyl
,
J. T.
,
de Lange
,
J.
, and
Quenneville
,
C. E.
,
2018
, “
A Force-Sensing Insole to Quantify Impact Loading to the Foot
,”
ASME J. Biomech. Eng.
,
141
(
2
), p.
024501
.10.1115/1.4041902
18.
Martinez
,
A. A.
,
Chakravarty
,
A. B.
, and
Quenneville
,
C. E.
,
2018
, “
The Effect of Impact Duration on the Axial Fracture Tolerance of the Isolated Tibia During Automotive and Military Impacts
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
315
320
.10.1016/j.jmbbm.2017.11.013
19.
Chakravarty
,
A. B.
,
Martinez
,
A. A.
, and
Quenneville
,
C. E.
,
2017
, “
The Injury Tolerance of the Tibia Under Off-Axis Impact Loading
,”
Biomed. Eng. Soc.
,
45
(
6
), pp.
1534
1542
.10.1007/s10439-017-1824-6
20.
Bull
,
A. M. J.
,
Clasper
,
J.
, and
Mahoney
,
P. F.
, eds.,
2016
,
Blast Injury Science and Engineering
,
Sprinter International Publishing
,
Switzerland
.
21.
North Atlantic Treaty Organization,
2007
, “
Test Methodology for Protection of Vehicle Occupants Against Anti-Vehicular Landmine Effects
,”
RTO, Neuilly-sur-Seine Cedex, France, Report No.
323.
22.
Welbourne
,
E. R.
, and
Shewchenko
,
N.
,
1987
, “
Improved Measures of Foot and Ankle Injury Risk From the Hybrid III Tibia
,”
Proceedings of the 16th International Technical Conference on the Enhanced Safety of Vehicles
, Windsor, ON, Canada, May 31–June 4, 1998, pp.
1618
1627
.
23.
Zuby
,
D. S.
,
Nolan
,
J. M.
, and
Sherwood
,
C. P.
,
2001
, “
Effect of Hybrid III Leg Geometry on Upper Tibia Bending Moments Effect of Hybrid III Leg Geometry on Upper Tibia Bending M Insurance Institute for Highway Safety
,”
SAE Int.
,
110
(
2001
), pp.
177
189
.10.4271/2001-01-0169
24.
Kuppa
,
S.
,
Wang
,
J.
,
Haffner
,
M.
, and
Eppinger
,
R.
,
2001
, “
Lower Extremity Injuries and Associated Injury Criteria
,”
SAE Paper No.
4
.
25.
Carpanen
, D.,
Masouros
, S., and
Newell N.
,
2016
, “
Surrogates of Human Injury
,”
Blast Injury Science and Engineering
,
A. M. J.
Bull
,
J.
Clasper
, and
P.
Mahoney
, eds.,
Springer
, Switzerland, pp.
189
198
.
26.
Dong
,
L.
,
Zhu
,
F.
,
Jin
,
X.
,
Suresh
,
M.
,
Jiang
,
B.
,
Sevagan
,
G.
,
Cai
,
Y.
,
Li
,
G.
, and
Yang
,
K. H.
,
2013
, “
Blast Effect on the Lower Extremities and Its Mitigation: A Computational Study
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
111
124
.10.1016/j.jmbbm.2013.07.010
27.
Gilchrist
,
M. D.
ed.,
2005
,
IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications
, Vol.
124
, Dordrecht, The Netherlands, Jan. 1.
28.
Insurance Institute for Highway Safety,
2004
, “
Guidelines for Using the UMTRI ATD Positioning Procedure for ATD and Seat Positioning
,” Insurance Institute for Highway Safety, Ruckersville, VA, Report.
29.
Funk
,
J. R.
,
Tourret
,
L. J.
,
George
,
S. E.
, and
Crandall
,
J. R.
,
2010
, “
The Role of Axial Loading in Malleolar Fractures
,”
SAE
Paper No. 1, pp.
212
223
.
30.
Gehring
,
D. U.
,
2010
, “
Flexible Pedestrian Legform Impactor Flex GTR Evaluation Tests
,” The European Automobile Manufacturer's Association and the German Federal Highway Research Institute, Bergisch Gladbach, Germany, Report No. TEG-141.
31.
Pandelani
,
T.
,
Sono
,
T. J.
,
Reinecke
,
J. D.
, and
Nurick
,
G. N.
,
2016
, “
Impact Loading Response of the MiL-Lx Leg Fitted With Combat Boots
,”
Int. J. Impact Eng.
,
92
, pp.
26
31
.10.1016/j.ijimpeng.2015.03.007
You do not currently have access to this content.