Abstract

Finite element analysis is a useful tool to model growth of biological tissues and predict how growth can be impacted by stimuli. Previous work has simulated growth using node-based or element-based approaches, and this implementation choice may influence predicted growth, irrespective of the applied growth model. This study directly compared node-based and element-based approaches to understand the isolated impact of implementation method on growth predictions by simulating growth of a bone rudiment geometry, and determined what conditions produce similar results between the approaches. We used a previously reported node-based approach implemented via thermal expansion and an element-based approach implemented via osmotic swelling, and we derived a mathematical relationship to relate the growth resulting from these approaches. We found that material properties (modulus) affected growth in the element-based approach, with growth completely restricted for high modulus values relative to the growth stimulus, and no restriction for low modulus values. The node-based approach was unaffected by modulus. Node- and element-based approaches matched marginally better when the conversion coefficient to relate the approaches was optimized based on the results of initial simulations, rather than using the theoretically predicted conversion coefficient (median difference in node position 0.042 cm versus 0.052 cm, respectively). In summary, we illustrate here the importance of the choice of implementation approach for modeling growth, provide a framework for converting models between implementation approaches, and highlight important considerations for comparing results in prior work and developing new models of tissue growth.

References

1.
Wang
,
J. H.
, and
Thampatty
,
B. P.
,
2006
, “
An Introductory Review of Cell Mechanobiology
,”
Biomech, Model Mechanobiol
,,
5
(
1
), pp.
1
16
.10.1007/s10237-005-0012-z
2.
Decker
,
R. S.
,
Koyama
,
E.
, and
Pacifici
,
M.
,
2014
, “
Genesis and Morphogenesis of Limb Synovial Joints and Articular Cartilage
,”
Matrix Biol
,,
39
, pp.
5
10
.10.1016/j.matbio.2014.08.006
3.
Arvind
,
V.
, and
Huang
,
A. H.
,
2017
, “
Mechanobiology of Limb Musculoskeletal Development
,”
Ann. N. Y. Acad. Sci.
,
1409
(
1
), pp.
18
32
.10.1111/nyas.13427
4.
Galloway
,
M. T.
,
Lalley
,
A. L.
, and
Shearn
,
J. T.
,
2013
, “
The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair
,”
J. Bone Jt. Surg. Am.
,
95
(
17
), pp.
1620
1628
.10.2106/JBJS.L.01004
5.
Discher
,
D. E.
,
Mooney
,
D. J.
, and
Zandstra
,
P. W.
,
2009
, “
Growth Factors, Matrices, and Forces Combine and Control Stem Cells
,”
Science
,
324
(
5935
), pp.
1673
1677
.10.1126/science.1171643
6.
Humphrey
,
J. D.
,
Dufresne
,
E. R.
, and
Schwartz
,
M. A.
,
2014
, “
Mechanotransduction and Extracellular Matrix Homeostasis
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
802
812
.10.1038/nrm3896
7.
Ambrosi
,
D.
,
Ben Amar
,
M.
,
Cyron
,
C. J.
,
DeSimone
,
A.
,
Goriely
,
A.
,
Humphrey
,
J. D.
, and
Kuhl
,
E.
,
2019
, “
Growth and Remodelling of Living Tissues: Perspectives, Challenges and Opportunities
,”
J. R. Soc. Interface
,
16
(
157
), p.
20190233
.10.1098/rsif.2019.0233
8.
Skalak
,
R.
,
Dasgupta
,
G.
,
Moss
,
M.
,
Otten
,
E.
,
Dullemeijer
,
P.
, and
Vilmann
,
H.
,
1982
, “
Analytical Description of Growth
,”
J. Theor. Biol.
,
94
(
3
), pp.
555
577
.10.1016/0022-5193(82)90301-0
9.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
10.
Fung
,
Y. C.
,
Liu
,
S. Q.
, and
Zhou
,
J. B.
,
1993
, “
Remodeling of the Constitutive Equation While a Blood Vessel Remodels Itself Under Stress
,”
ASME J. Biomech. Eng
,
115
(
4B
), pp.
453
459
.10.1115/1.2895523
11.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
03
), pp.
407
430
.10.1142/S0218202502001714
12.
Klisch
,
S. M.
,
Chen
,
S. S.
,
Sah
,
R. L.
, and
Hoger
,
A.
,
2003
, “
A Growth Mixture Theory for Cartilage With Application to Growth-Related Experiments on Cartilage Explants
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
169
179
.10.1115/1.1560144
13.
Lanir
,
Y.
,
2015
, “
Mechanistic Micro-Structural Theory of Soft Tissues Growth and Remodeling: Tissues With Unidirectional Fibers
,”
Biomech. Model Mechanobiol.
,
14
(
2
), pp.
245
266
.10.1007/s10237-014-0600-x
14.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
15.
Giorgi
,
M.
,
Carriero
,
A.
,
Shefelbine
,
S. J.
, and
Nowlan
,
N. C.
,
2014
, “
Mechanobiological Simulations of Prenatal Joint Morphogenesis
,”
J. Biomech.
,
47
(
5
), pp.
989
995
.10.1016/j.jbiomech.2014.01.002
16.
Heegaard
,
J. H.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
,
1999
, “
Mechanically Modulated Cartilage Growth May Regulate Joint Surface Morphogenesis
,”
J. Orthop. Res.
,
17
(
4
), pp.
509
517
.10.1002/jor.1100170408
17.
Dixit
,
N. N.
,
McFarland
,
D. C.
, and
Saul
,
K. R.
,
2019
, “
Computational Analysis of Glenohumeral Joint Growth and Morphology Following a Brachial Plexus Birth Injury
,”
J. Biomech.
,
86
, pp.
48
54
.10.1016/j.jbiomech.2019.01.040
18.
Shefelbine
,
S. J.
, and
Carter
,
D. R.
,
2004
, “
Mechanobiological Predictions of Growth Front Morphology in Developmental Hip Dysplasia
,”
J. Orthop. Res.
,
22
(
2
), pp.
346
352
.10.1016/j.orthres.2003.08.004
19.
Kainz
,
H.
,
Killen
,
B. A.
,
Wesseling
,
M.
,
Perez-Boerema
,
F.
,
Pitto
,
L.
,
Garcia Aznar
,
J. M.
,
Shefelbine
,
S.
, and
Jonkers
,
I.
,
2020
, “
A Multi-Scale Modelling Framework Combining Musculoskeletal Rigid-Body Simulations With Adaptive Finite Element Analyses, to Evaluate the Impact of Femoral Geometry on Hip Joint Contact Forces and Femoral Bone Growth
,”
PLos One
,
15
(
7
), p.
e0235966
.10.1371/journal.pone.0235966
20.
Libby
,
J.
,
Marghoub
,
A.
,
Johnson
,
D.
,
Khonsari
,
R. H.
,
Fagan
,
M. J.
, and
Moazen
,
M.
,
2017
, “
Modelling Human Skull Growth: A Validated Computational Model
,”
J. R. Soc. Interface
,
14
(
130
), p. 20170202.10.1098/rsif.2017.0202
21.
Cobetto
,
N.
,
Aubin
,
C. E.
, and
Parent
,
S.
,
2020
, “
Anterior Vertebral Body Growth Modulation: Assessment of the 2-Year Predictive Capability of a Patient-Specific Finite-Element Planning Tool and of the Growth Modulation Biomechanics
,”
Spine (Phila Pa 1976)
,
45
(
18
), pp.
E1203
E1209
.10.1097/BRS.0000000000003533
22.
Zollner
,
A. M.
,
Pok
,
J. M.
,
McWalter
,
E. J.
,
Gold
,
G. E.
, and
Kuhl
,
E.
,
2015
, “
On High Heels and Short Muscles: A Multiscale Model for Sarcomere Loss in the Gastrocnemius Muscle
,”
J. Theor. Biol.
,
365
, pp.
301
310
.10.1016/j.jtbi.2014.10.036
23.
Budday
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2015
, “
Secondary Instabilities Modulate Cortical Complexity in the Mammalian Brain
,”
Philos. Mag. (Abingdon)
,
95
(
28–30
), pp.
3244
3256
.10.1080/14786435.2015.1024184
24.
Iranmanesh
,
F.
, and
Nazari
,
M. A.
,
2017
, “
Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081009
.10.1115/1.4037038
25.
Cyron
,
C. J.
,
Aydin
,
R. C.
, and
Humphrey
,
J. D.
,
2016
, “
A Homogenized Constrained Mixture (and Mechanical Analog) Model for Growth and Remodeling of Soft Tissue
,”
Biomech. Model Mechanobiol.
,
15
(
6
), pp.
1389
1403
.10.1007/s10237-016-0770-9
26.
Grytsan
,
A.
,
Eriksson
,
T. S. E.
,
Watton
,
P. N.
, and
Gasser
,
T. C.
,
2017
, “
Growth Description for Vessel Wall Adaptation: A Thick-Walled Mixture Model of Abdominal Aortic Aneurysm Evolution
,”
Materials (Basel)
,
10
(
9
), p.
994
.10.3390/ma10090994
27.
Horvat
,
N.
,
Virag
,
L.
,
Holzapfel
,
G.
,
Sorić
,
J.
, and
Karšaj
,
I.
,
2019
, “
A Finite Element Implementation of a Growth and Remodeling Model for Soft Biological Tissues: Verification and Application to Abdominal Aortic Aneurysms
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
586
605
.10.1016/j.cma.2019.04.041
28.
Lin
,
W. J.
,
Iafrati
,
M. D.
,
Peattie
,
R. A.
, and
Dorfmann
,
L.
,
2018
, “
Growth and Remodeling With Application to Abdominal Aortic Aneurysms
,”
J. Eng. Math.
,
109
(
1
), pp.
113
137
.10.1007/s10665-017-9915-9
29.
Mousavi
,
S. J.
, and
Avril
,
S.
,
2017
, “
Patient-Specific Stress Analyses in the Ascending Thoracic Aorta Using a Finite-Element Implementation of the Constrained Mixture Theory
,”
Biomech. Model Mechanobiol.
,
16
(
5
), pp.
1765
1777
.10.1007/s10237-017-0918-2
30.
Genet
,
M.
,
Lee
,
L. C.
,
Baillargeon
,
B.
,
Guccione
,
J. M.
, and
Kuhl
,
E.
,
2016
, “
Modeling Pathologies of Diastolic and Systolic Heart Failure
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
112
127
.10.1007/s10439-015-1351-2
31.
Dixit
,
N. N.
,
McFarland
,
D. C.
,
Fisher
,
M. B.
,
Cole
,
J. H.
, and
Saul
,
K. R.
,
2020
, “
Integrated Iterative Musculoskeletal Modeling Predicts Bone Morphology Following Brachial Plexus Birth Injury (BPBI)
,”
J. Biomech.
,
103
, p.
109658
.10.1016/j.jbiomech.2020.109658
32.
Ateshian
,
G. A.
,
Costa
,
K. D.
,
Azeloglu
,
E. U.
,
Morrison
,
B.
, 3rd.
, and
Hung
,
C. T.
,
2009
, “
Continuum Modeling of Biological Tissue Growth by Cell Division, and Alteration of Intracellular Osmolytes and Extracellular Fixed Charge Density
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101001
.10.1115/1.3192138
33.
Zhao
,
Y.
,
Feng
,
B.
,
Lee
,
J.
,
Lu
,
N.
, and
Pierce
,
D. M.
,
2020
, “
A Multi-Layered Model of Human Skin Elucidates Mechanisms of Wrinkling in the Forehead
,”
J. Mech. Behav. Biomed. Mater.
,
105
, p.
103694
.10.1016/j.jmbbm.2020.103694
34.
Cverna
,
F.
,
2002
, “
Thermal Expansion
,”
ASM Ready Reference: Thermal Properties of Metals
,
ASM International
,
Materials Park, OH
, pp.
9
10
.
35.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
36.
Moerman
,
K. A.
,
2018
, “
GIBBON: The Geometry and Image-Based Bioengineering Add-On
,”
J. Open Source Software
,
3
(
22
), p.
506
.10.21105/joss.00506
37.
Ateshian
,
G. A.
,
Morrison
,
B.
, 3rd
,
Holmes
,
J. W.
, and
Hung
,
C. T.
,
2012
, “
Mechanics of Cell Growth
,”
Mech. Res. Commun.
,
42
, pp.
118
125
.10.1016/j.mechrescom.2012.01.010
38.
Gray
,
D. J.
,
Gardner
,
E.
, and
O'Rahilly
,
R.
,
1957
, “
The Prenatal Development of the Skeleton and Joints of the Human Hand
,”
Am. J. Anat.
,
101
(
2
), pp.
169
223
.10.1002/aja.1001010202
39.
Tanck
,
E.
,
Van Donkelaar
,
C. C.
,
Jepsen
,
K. J.
,
Goldstein
,
S. A.
,
Weinans
,
H.
,
Burger
,
E. H.
, and
Huiskes
,
R.
,
2004
, “
The Mechanical Consequences of Mineralization in Embryonic Bone
,”
Bone
,
35
(
1
), pp.
186
190
.10.1016/j.bone.2004.02.015
You do not currently have access to this content.