To better understand the disorders in the pelvic cavity associated with the pelvic floor muscles (PFM) using computational models, it is fundamental to identify the biomechanical properties of these muscles. For this purpose, we implemented an optimization scheme, involving a genetic algorithm (GA) and an inverse finite element analysis (FEA), in order to estimate the material properties of the pubovisceralis muscle (PVM). The datasets of five women were included in this noninvasive analysis. The numerical models of the PVM were built from static axial magnetic resonance (MR) images, and the hyperplastic Mooney–Rivlin constitutive model was used. The material parameters obtained were compared with the ones established through a similar optimization scheme, using Powell's algorithm. To validate the values of the material parameters that characterize the passive behavior of the PVM, the displacements obtained via the numerical models with both methods were compared with dynamic MR images acquired during Valsalva maneuver. The material parameters (c1 and c2) were higher for the GA than for Powell's algorithm, but when comparing the magnitude of the displacements in millimeter of the PVM, there was only a 5% difference, and 4% for the principal logarithmic strain. The GA allowed estimating the in vivo biomechanical properties of the PVM of different subjects, requiring a lower number of simulations when compared to Powell's algorithm.

References

1.
Schwertner-Tiepelmann
,
N.
,
Thakar
,
R.
,
Sultan
,
A. H.
, and
Tunn
,
R.
,
2012
, “
Obstetric Levator Ani Muscle Injuries: Current Status
,”
Ultrasound Obstet. Gynecol.
,
39
(
4
), pp.
372
383
.
2.
Dietz
,
H. P.
,
Shek
,
C.
, and
Clarke
,
B.
,
2005
, “
Biometry of the Pubovisceral Muscle and Levator Hiatus by Three-Dimensional Pelvic Floor Ultrasound
,”
Ultrasound Obstet. Gynecol.
,
25
(
6
), pp.
580
585
.
3.
Brandão
,
S.
,
Da Roza
,
T.
,
Mascarenhas
,
T.
,
Duarte
,
S.
,
Ramos
,
I.
,
Parente
,
M.
, and
Jorge
,
R. N.
,
2013
, “
Moment of Inertia as a Means to Evaluate the Biomechanical Impact of Pelvic Organ Prolapse
,”
Int. J. Urol.
,
20
(
1
), pp.
86
92
.
4.
Janda
,
S.
,
2006
, “
Biomechanics of the Pelvic Floor Musculature
,”
Ph.D. thesis
, Technische Universiteit Delft, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A68ded298-7765-4490-9c7f-1d079a9a9c7e
5.
Martins
,
P. A. L.
,
2010
, “
Experimental and Numerical Studies of Soft Biological Tissues
,” Ph.D. thesis, University of Porto, Porto, Portugal.
6.
Parente
,
M. P.
,
Natal Jorge
,
R.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
, and
Martins
,
J.
,
2008
, “
Deformation of the Pelvic Floor Muscles During a Vaginal Delivery
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
19
(
1
), pp.
65
71
.
7.
Roza
,
T.
,
Da
,
Brandão
,
S.
,
Oliveira
,
D.
,
Mascarenhas
,
T.
,
Parente
,
M.
,
Duarte
,
J. A.
, and
Jorge
,
R. N.
,
2015
, “
Football Practice and Urinary Incontinence: Relation Between Morphology, Function and Biomechanics
,”
J. Biomech.
,
48
(
9
), pp.
1587
1592
.
8.
Noakes
,
K. F.
,
Pullan
,
A. J.
,
Bissett
,
I. P.
, and
Cheng
,
L. K.
,
2008
, “
Subject Specific Finite Elasticity Simulations of the Pelvic Floor
,”
J. Biomech.
,
41
(
14
), pp.
3060
3065
.
9.
Silva
,
M. E. T.
,
Brandao
,
S.
,
Parente
,
M. P.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2016
, “
Establishing the Biomechanical Properties of the Pelvic Soft Tissues Through an Inverse Finite Element Analysis Using Magnetic Resonance Imaging
,”
Proc. Inst. Mech. Eng. Part H
,
230
(
4
), pp.
298
309
.
10.
Silva
,
M. E. T.
,
Oliveira
,
D. A.
,
Roza
,
T. H.
,
Brandão
,
S.
,
Parente
,
M. P. L.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2015
, “
Study on the Influence of the Fetus Head Molding on the Biomechanical Behavior of the Pelvic Floor Muscles, During Vaginal Delivery
,”
J. Biomech.
,
48
(
9
), pp.
1600
1605
.
11.
Parente
,
M. P.
,
Natal Jorge
,
R. M.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
Silva-Filho
,
A. L.
,
2010
, “
Computational Modeling Approach to Study the Effects of Fetal Head Flexion During Vaginal Delivery
,”
Am. J. Obstet. Gynecol.
,
203
(
3
), pp.
217.e1
217.e6
.
12.
Brandão
,
F. S.
,
Parente
,
M. P.
,
Rocha
,
P. A.
,
Saraiva
,
M. T.
,
Ramos
,
I. M.
, and
Natal Jorge
,
R. M.
,
2016
, “
Modeling the Contraction of the Pelvic Floor Muscles
,”
Comput Methods Biomech. Biomed. Eng.
,
19
(
4
), pp.
347
356
.
13.
Lee
,
S.
,
Darzi
,
A.
, and
Yang
,
G.
,
2005
, “
Subject Specific Finite Element Modelling of the Levator Ani
,”
Med. Image Comput. Comput. Interv.
,
3749
, pp.
360
367
.
14.
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O. L.
,
2009
, “
A 3D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation
,”
J. Biomech.
,
42
(
10
), pp.
1371
1377
.
15.
Silva
,
M. E. T.
,
Brandão
,
S.
,
Parente
,
M. P.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R.
,
2017
, “
The Influence of Pelvic Organ Prolapse on the Passive Biomechanical Properties of Pelvic Floor Muscles
,”
J. Mech. Med. Biol.
,
17
(
6
), p.
1750090
.
16.
Herschorn
,
S.
,
2004
, “
Female Pelvic Floor Anatomy: The Pelvic Floor, Supporting Structures, and Pelvic Organs
,”
Rev. Urol.
,
6
(
5
), pp.
S2
S10
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472875/
17.
Martins
,
P.
,
Jorge
,
R. N.
, and
Ferreira
,
A.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
18.
Jean-Charles
,
C.
,
Rubod
,
C.
,
Brieu
,
M.
,
Boukerrou
,
M.
,
Fasel
,
J.
,
Cosson
,
M.
,
Clay
,
J.-C.
,
Rubod
,
C.
,
Brieu
,
M.
,
Boukerrou
,
M.
,
Fasel
,
J.
, and
Cosson
,
M.
,
2010
, “
Biomechanical Properties of Prolapsed or Non-Prolapsed Vaginal Tissue: Impact on Genital Prolapse Surgery
,”
Int. Urogynecol. J.
,
21
(
12
), pp.
1535
1538
.
19.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Jean-Charles
,
C.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2008
, “
Biomechanical Properties of Vaginal Tissue: Preliminary Results
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
19
(
6
), pp.
811
816
.
20.
Lei
,
L.
,
Song
,
Y.
, and
Chen
,
R.
,
2007
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
18
(
6
), pp.
603
607
.
21.
Kauer
,
M.
,
Vuskovic
,
V.
,
Dual
,
J.
,
Szekely
,
G.
, and
Bajka
,
M.
,
2002
, “
Inverse Finite Element Characterization of Soft Tissues
,”
Med. Image Anal.
,
6
(
3
), pp.
275
287
.
22.
Khalil
,
A. S.
,
Bouma
,
B. E.
, and
Kaazempur Mofrad
,
M. R.
,
2006
, “
A Combined FEM/Genetic Algorithm for Vascular Soft Tissue Elasticity Estimation
,”
Cardiovasc. Eng.
,
6
(
3
), pp.
93
102
.
23.
Meier
,
C.
,
Yassine
,
A. A.
, and
Browning
,
T. R.
,
2007
, “
Design Process Sequencing With Competent Genetic Algorithms
,”
ASME J. Mech. Des.
,
129
(
6
), p.
566
.
24.
Lenjan-Nejadian
,
S.
, and
Rostami
,
M.
,
2010
, “Genetic Algorithm
Optimization Applied to a Biomechanical Model of Snatch Lift
,”
Int. J. Comput. Sci. Sport
,
9
(1), pp.
45
60
. https://dblp.org/pers/hd/l/Lenjan=Nejadian:Shahram
25.
Raizada
,
V.
, and
Mittal
,
R. K.
,
2008
, “
Pelvic Floor Anatomy and Applied Physiology
,”
Gastroenterol. Clin. North Am.
,
37
(
3
), pp.
493
497
.
26.
Brandão
,
S.
,
Parente
,
M.
,
Mascarenhas
,
T.
,
da Silva
,
A. R. G.
,
Ramos
,
I.
, and
Jorge
,
R. N.
,
2015
, “
Biomechanical Study on the Bladder Neck and Urethral Positions: Simulation of Impairment of the Pelvic Ligaments
,”
J. Biomech.
,
48
(
2
), pp.
217
223
.
27.
Tumbarello
,
J. A.
,
Hsu
,
Y.
,
Lewicky-Gaupp
,
C.
,
Rohrer
,
S.
, and
DeLancey
,
J. O. L.
,
2010
, “
Do Repetitive Valsalva Maneuvers Change Maximum Prolapse on Dynamic MRI?
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
21
(
10
), pp.
1247
1251
.
28.
Rubod
,
C.
,
Brieu
,
M.
,
Cosson
,
M.
,
Rivaux
,
G.
,
Clay
,
J. C.
,
De Landsheere
,
L.
, and
Gabriel
,
B.
,
2012
, “
Biomechanical Properties of Human Pelvic Organs
,”
Urology
,
79
(
4
), pp.
968.e17
968.e22
.
29.
Parente
,
M. P.
,
Jorge
,
R. M. N.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
Martins
,
J. A. C.
,
2009
, “
The Influence of an Occipito-Posterior Malposition on the Biomechanical Behavior of the Pelvic Floor
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
144
(
1
), pp.
S166
S169
.
30.
,
K.
,
Lilleås
,
F.
,
Talseth
,
T.
, and
Hedland
,
H.
,
2001
, “
Dynamic MRI of the Pelvic Floor Muscles in an Upright Sitting Position
,”
Neurourol. Urodyn.
,
20
(
2
), pp.
167
174
.
31.
Gao
,
W.
,
Liu
,
S.
, and
Huang
,
L.
,
2013
, “
A Novel Artificial Bee Colony Algorithm With Powell's Method
,”
Appl. Soft Comput.
,
13
(
9
), pp.
3763
3775
.
32.
Powell
,
M. J. D.
,
1977
, “
Restart Procedures for the Conjugate Gradient Method
,”
Math. Program.
,
12
(
1
), pp.
241
254
.
33.
McCall
,
J.
,
2005
, “
Genetic Algorithms for Modelling and Optimisation
,”
J. Comput. Appl. Math.
,
184
(
1
), pp.
205
222
.
34.
Glaser
,
K. J.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
2012
, “
Review of MR Elastography Applications and Recent Developments
,”
J. Magn. Reson. Imaging
,
36
(
4
), pp.
757
774
.
35.
Garra
,
B. S.
,
2015
, “
Elastography: History, Principles, and Technique Comparison
,”
Abdom. Imaging
,
40
(
4
), pp.
680
697
.
36.
Mariappan
,
Y. K.
,
Glaser
,
K. J.
, and
Ehman
,
R. L.
,
2010
, “
Magnetic Resonance Elastography: A Review
,”
Clin. Anat.
,
23
(
5
), pp.
497
511
.
37.
Wells
,
P. N.
, and
Liang
,
H. D.
,
2011
, “
Medical Ultrasound: Imaging of Soft Tissue Strain and Elasticity
,”
J. R. Soc. Interface
,
7
(
64
), pp.
1521
–15
49
.
38.
Gennisson
,
J.
,
Deffieux
,
T.
,
Macé
,
E.
,
Montaldo
,
G.
,
Fink
,
M.
, and
Tanter
,
M.
,
2010
, “
Viscoelastic and Anisotropic Mechanical Properties of in Vivo Muscle Tissue Assessed by Supersonic Shear Imaging
,”
Ultrasound Med. Biol.
,
36
(
5
), pp.
789
801
.
39.
Oudry
,
J.
,
Chen
,
J.
,
Glaser
,
K.
,
Miette
,
V.
,
Sandrin
,
L.
, and
Ehman
,
R.
,
2009
, “
Cross-Validation of Magnetic Resonance Elastography and Ultrasound-Based Transient Elastography: A Preliminary Phantom Study
,”
J. Magn. Reson. Imaging
,
30
(
5
), pp.
1145
–11
50
.
40.
Silva
,
M. E. T.
,
Brandao
,
S.
,
Parente
,
M. P.
,
Mascarenhas
,
T.
, and
Natal Jorge
,
R. M.
,
2017
, “
Biomechanical Properties of the Pelvic Floor Muscles of Continent and Incontinent Women Using an Inverse Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
8
), pp.
842
852
.
41.
Martins
,
J. A. C.
,
Pires
,
E. B.
,
Salvado
,
R.
, and
Dinis
,
P. B.
,
1998
, “
A Numerical Model of Passive and Active Behavior of Skeletal Muscles
,”
Comput. Methods Appl. Mech. Eng.
,
151
(
3–4
), pp.
419
433
.
You do not currently have access to this content.