Computational fluid dynamics (CFD) models have become very effective tools for predicting the flow field within the carotid bifurcation, and for understanding the relationship between local hemodynamics, and the initiation and progression of vascular wall pathologies. As prescribing proper boundary conditions can affect the solutions of the equations governing blood flow, in this study, we investigated the influence to assumptions regarding the outflow boundary conditions in an image-based CFD model of human carotid bifurcation. Four simulations were conducted with identical geometry, inlet flow rate, and fluid parameters. In the first case, a physiological time-varying flow rate partition at branches along the cardiac cycle was obtained by coupling the 3D model of the carotid bifurcation at outlets with a lumped-parameter model of the downstream vascular network. Results from the coupled model were compared with those obtained by imposing three fixed flow rate divisions (50/50, 60/40, and 70/30) between the two branches of the isolated 3D model of the carotid bifurcation. Three hemodynamic wall parameters were considered as indicators of vascular wall dysfunction. Our findings underscore that the overall effect of the assumptions done in order to simulate blood flow within the carotid bifurcation is mainly in the hot-spot modulation of the hemodynamic descriptors of atherosusceptible areas, rather than in their distribution. In particular, the more physiological, time-varying flow rate division deriving from the coupled simulation has the effect of damping wall shear stress (WSS) oscillations (differences among the coupled and the three fixed flow partition models are up to 37.3% for the oscillating shear index). In conclusion, we recommend to adopt more realistic constraints, for example, by coupling models at different scales, as in this study, when the objective is the outcome prediction of alternate therapeutic interventions for individual patients, or to test hypotheses related to the role of local fluid dynamics and other biomechanical factors in vascular diseases.

1.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4B
), pp.
588
595
.
2.
Moore
,
J. E.
, Jr.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
, 1994, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behaviour and Relationship to Atherosclerosis
,”
Atherosclerosis
0021-9150,
110
(
2
), pp.
225
240
.
3.
Caro
,
C. G.
,
Fitz
,
G. J.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
, pp.
109
133
.
4.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
5.
Karino
,
T.
, 1986, “
Microscopic Structure of Disturbed Flows in the Arterial and Venous System, and Its Implication in the Localization of Vascular Disease
,”
Int. Angiol
0392-9590,
5
(
4
), pp.
297
313
.
6.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
7.
Davies
,
P. F.
,
Polacek
,
D. C.
,
Shi
,
C.
, and
Helmke
,
B. P.
, 2002, “
The Convergence of Hemodynamics, Genomics, and Endothelial Structure in Studies of the Focal Origin of Atherosclerosis
,”
Biorheology
0006-355X,
39
, pp.
299
306
.
8.
Caro
,
C. G.
,
Fitz
,
G. J.
, and
Schroter
,
R. C.
, 1969, “
Arterial Wall Shear and Distribution of Early Atheroma in Man
,”
Nature (London)
0028-0836,
223
, pp.
1159
1161
.
9.
Ma
,
P.
,
Li
,
X.
, and
Ku
,
D. N.
, 1997, “
Convective Mass Transfer at the Carotid Bifurcation
,”
J. Biomech.
0021-9290,
30
, pp.
565
571
.
10.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1987, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
0021-9150,
68
, pp.
27
33
.
11.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modelling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
124
(
2
), pp.
166
175
.
12.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully Developed Flow?
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
371
379
.
13.
Ford
,
M. D.
,
Xie
,
Y. J.
,
Wasserman
,
B. A.
, and
Steinman
,
D. A.
, 2008, “
Is Flow in the Common Carotid Artery Fully Developed?
,”
Physiol. Meas
0967-3334,
29
(
11
), pp.
1335
1349
.
14.
Wake
,
A. K.
,
Oshinski
,
J. N.
,
Tannenbaum
,
A. R.
, and
Giddens
,
D. P.
, 2009, “
Choice of In Vivo Versus Idealized Velocity Boundary Conditions Influences Physiologically Relevant Flow Patterns in a Subject-Specific Simulation of Flow in the Human Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
2
), p.
021013
.
15.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
273
278
.
16.
Thomas
,
J. B.
,
Milner
,
J. S.
, and
Steinman
,
D. A.
, 2002, “
On the Influence of Vessel Planarity on Local Hemodynamics at the Human Carotid Bifurcation
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
443
448
.
17.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
132
141
.
18.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
19.
Zhao
,
S. Z.
,
Ariff
,
B.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
, and
Xu
,
X. Y.
, 2002, “
Inter-Individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1367
1377
.
20.
Formaggia
,
L.
,
Veneziani
,
A.
, and
Vergara
,
C.
, 2008, “
A New Approach to Numerical Solution of Defective Boundary Value Problems in Incompressible Fluid Dynamics
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
46
(
6
), pp.
2769
2794
.
21.
Augst
,
A. D.
,
Barratt
,
D. C.
,
Hughes
,
A. D.
,
Thom
,
S. A.
, and
Xu
,
X. Y.
, 2003, “
Various Issues Relating to Computational Fluid Dynamics Simulations of Carotid Bifurcation Flow Based on Models Reconstructed From Three-Dimensional Ultrasound Images
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
217
(
5
), pp.
393
403
.
22.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. V.
, 2000, “
Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study
,”
J. Magn. Reson Imaging
1053-1807,
11
, pp.
299
311
.
23.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Interindividual Variation
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
(
1
), pp.
17
32
.
24.
Augst
,
A. D.
,
Ariff
,
B.
,
Thom
,
S. A. M.
,
Xu
,
X. Y.
, and
Hughes
,
A. D.
, 2007, “
Analysis of Complex Flow and the Relationship Between Blood Pressure, Wall Shear Stress, and Intima-Media Thickness in the Human Carotid Artery
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
, pp.
H1031
H1037
.
25.
Tan
,
F. P.
,
Soloperto
,
G.
,
Bashford
,
S.
,
Wood
,
N. B.
,
Thom
,
S.
,
Hughes
,
A.
, and
Xu
,
X. Y.
, 2008, “
Analysis of Flow Disturbance in a Stenosed Carotid Artery Bifurcation Using Two-Equation Transitional and Turbulence Models
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
6
), p.
061008
.
26.
Hyun
,
S.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
, 2003, “
Computational Analysis of Effects of External Carotid Artery Flow and Occlusion on Adverse Carotid Bifurcation Hemodynamics
,”
J. Vasc. Surg.
0741-5214,
37
(
6
), pp.
1248
1254
.
27.
Blanco
,
P. J.
,
Pivello
,
M. R.
,
Urquiza
,
S. A.
, and
Feijóo
,
R. A.
, 2009, “
On the Potentialities of 3D-1D Coupled Models in Hemodynamics Simulations
,”
J. Biomech.
0021-9290,
42
(
7
), pp.
919
930
.
28.
Redaelli
,
A.
, and
Montevecchi
,
F. M.
, 1996, “
Computational Evaluation of Intraventricular Pressure Gradients Based on a Fluid-Structure Approach
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
4
), pp.
529
537
.
29.
Formaggia
,
L.
,
Nobile
,
F.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
, 1999, “
Multiscale Modelling of the Circulatory System: A Preliminary Analysis
,”
Comput. Visualization Sci.
1432-9360,
2
, pp.
75
83
.
30.
Formaggia
,
L.
,
Lamponi
,
D.
,
Tuveri
,
M.
, and
Veneziani
,
A.
, 2006, “
Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
9
(
5
), pp.
273
288
.
31.
Urquiza
,
S. A.
,
Blanco
,
P. J.
,
Vénere
,
M. J.
, and
Feijóo
,
R. A.
, 2006, “
Multidimensional Modelling for the Carotid Artery Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
4002
4017
.
32.
Migliavacca
,
F.
,
Balossino
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Hsia
,
T. Y.
,
de Leval
,
M. R.
, and
Bove
,
E. L.
, 2006, “
Multiscale Modelling in Biofluidynamics: Application to Reconstructive Pediatric Cardiac Surgery
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1010
1020
.
33.
Balossino
,
R.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Formaggia
,
L.
,
Veneziani
,
A.
,
Tuveri
,
M.
, and
Dubini
,
G.
, 2009, “
Computational Models to Predict Stenosis Growth in Carotid Arteries: Which Is the Role of Boundary Conditions?
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
1
), pp.
113
123
.
34.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
, 2008, “
An Image-Based Modelling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
0140-0118,
46
(
11
), pp.
1097
1112
.
35.
Marshall
,
I.
,
Papathanasopoulou
,
P.
, and
Wartolowska
,
K.
, 2004, “
Carotid Flow Rates and Flow Division at the Bifurcation in Healthy Volunteers
,”
Physiol. Meas.
,
25
(
3
), pp.
691
697
.
36.
Westerhof
,
N.
,
Lankhaar
,
J. W.
, and
Westerhof
,
B. E.
, 2009, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
0140-0118,
47
(
2
), pp.
131
141
.
37.
Quarteroni
,
A.
,
Ragni
,
S.
, and
Veneziani
,
A.
, 2001, “
Coupling Between Lumped and Distributed Models for Blood Flow Problem
,”
Comput. Visualization Sci.
1432-9360,
4
, pp.
111
124
.
38.
Quarteroni
,
A.
, and
Veneziani
,
A.
, 2003, “
Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations
,”
Multiscale Model. Simul.
1540-3459,
1
(
2
), pp.
173
195
.
39.
Laganà
,
K.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Pietrabissa
,
R.
,
Pennati
,
G.
,
Veneziani
,
A.
, and
Quarteroni
,
A.
, 2002, “
Multiscale Modelling as a Tool to Prescribe Realistic Boundary Conditions for the Study of Surgical Procedures
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
359
364
.
40.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061013
.
41.
Kessler
,
M.
, 2002, “
Biocompatibility
,”
Nephrol. Dial Transplant
0931-0509,
17
(
7
), pp.
32
44
.
42.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
43.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
5
), pp.
H1916
H1922
.
44.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
(
8
), pp.
2341
2347
.
45.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
, 2005, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.
46.
Olufsen
,
M. S.
, 1999, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol.
0002-9513,
276
, pp.
H257
H268
.
47.
Veneziani
,
A.
, and
Vergara
,
C.
, 2005, “
Flow Rate Defective Boundary Conditions in Hemodynamics Simulations
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
(
8–9
), pp.
803
816
.
48.
Spilker
,
R. L.
,
Feinstein
,
J. A.
,
Parker
,
D. W.
,
Reddy
,
V. M.
, and
Taylor
,
C. A.
, 2007, “
Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries
,”
Ann. Biomed. Eng.
0090-6964,
35
(
4
), pp.
546
559
.
49.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansenc
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
50.
Grinberg
,
L.
, and
Karniadakis
,
G. E. M.
, 2008, “
Outflow Boundary Conditions for Arterial Networks With Multiple Outlets
,”
Ann. Biomed. Eng.
0090-6964,
36
(
9
), pp.
1496
1514
.
51.
Ponzini
,
R.
,
Lemma
,
M.
,
Morbiducci
,
U.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
, 2008, “
Doppler Derived Quantitative Flow Estimate in Coronary Artery Bypass Graft: A Computational Multi-Scale Model for the Evaluation of the Current Theory
,”
Med. Eng. Phys.
1350-4533,
30
(
7
), pp.
809
816
.
52.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
, 2000, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Artery Bifurcation
,”
J. Biomech.
0021-9290,
33
(
8
), pp.
975
984
.
53.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
, 2002, “
Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
9
20
.
54.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
, 2009, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
1523-9829,
11
, pp.
109
134
.
55.
Kim
,
H. J.
,
Figueroa
,
C. A.
,
Hughes
,
T. J. R.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2009, “
Augmented Lagrangian Method for Constraining the Shape of Velocity Profiles at Outlet Boundaries for Three-Dimensional Finite Element Simulations of Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
3551
3566
.
56.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D’Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
, 2005, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
0021-9290,
38
, pp.
1375
1386
.
57.
Liu
,
X.
,
Pu
,
F.
,
Fan
,
Y.
,
Deng
,
X.
,
Li
,
D.
, and
Li
,
S.
, 2009, “
A Numerical Study on the Flow of Blood and the Transport of LDL in the Human Aorta: The Physiological Significance of the Helical Flow in the Aortic Arch
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
297
, pp.
H163
H170
.
58.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
, 2007, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
0021-9290,
40
, pp.
519
534
.
59.
Morbiducci
,
U.
,
Lemma
,
M.
,
Ponzini
,
R.
,
Boi
,
A.
,
Bondavalli
,
L.
,
Antona
,
C.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
, 2007, “
Does Flow Dynamics of the Magnetic Vascular Coupling for Distal Anastomosis in Coronary Artery Bypass Grafting Contribute to the Risk of Graft Failure?
,”
Int. J. Artif. Organs
0391-3988,
30
, pp.
628
639
.
60.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
, 2009, “
In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast MRI
,”
Ann. Biomed. Eng.
0090-6964,
37
, pp.
516
531
.
61.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Nobili
,
M.
,
Massai
,
D.
,
Montevecchi
,
F. M.
,
Bluestein
,
D.
, and
Redaelli
,
A.
, 2009, “
Blood Damage Safety of Prosthetic Heart Valves. Shear-Induced Platelet Activation and Local Flow Dynamics: A Fluid-Structure Interaction Approach
,”
J. Biomech.
0021-9290,
42
(
12
), pp.
1952
1960
.
62.
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
, 2009, “
Numerical Investigation of Blood Flow in the Distal End of an Axis-Deviated Arterial Bypass Model
,”
Biorheology
0006-355X,
46
, pp.
83
92
.
63.
Zhan
,
F.
,
Fan
,
Y.
, and
Deng
,
X.
, 2010, “
Swirling Flow Created in a Glass Tube Suppressed Platelet Adhesion to the Surface of the Tube: Its Implication in the Design of Small-Caliber Arterial Grafts
,”
Thromb. Res.
0049-3848,
125
(
5
), pp.
413
418
.
You do not currently have access to this content.