Numerical simulations are performed to investigate the flow within the end-to-side proximal anastomosis of a pulsatile pediatric ventricular assist device (PVAD) to an aorta. The anastomotic model is constructed from a patient-specific pediatric aorta. The three great vessels originating from the aortic arch— brachiocephalic (innominate), left common carotid, and left subclavian arteries—are included. An implicit large eddy simulation method based on a finite volume approach is used to study the resulting turbulent flow. A resistance boundary condition is applied at each branch outlet to study flow splitting. The PVAD anastomosis is found to alter the aortic flow dramatically. More flow is diverted into the great vessels with the PVAD support. Turbulence is found in the jet impingement area at peak systole for 100% bypass, and a maximum principal normal Reynolds stress of 7081dyn/cm2 is estimated based on ten flow cycles. This may be high enough to cause hemolysis and platelet activation. Regions prone to intimal hyperplasia are identified by combining the time-averaged wall shear stress and oscillatory shear index. These regions are found to vary, depending on the percentage of the flow bypass.

1.
Weston
,
M. W.
,
Rhee
,
K.
, and
Tarbell
,
J. M.
, 1996, “
Compliance and Diameter Mismatch Affect the Wall Shear Rate Distribution Near an End-to-End Anastomosis
,”
J. Biomech.
0021-9290,
29
, pp.
187
198
.
2.
Salacinski
,
H. J.
,
Goldner
,
S.
,
Giudiceandrea
,
A.
,
Hamilton
,
G.
,
Seifalian
,
A. M.
,
Edwards
,
A.
, and
Carson
,
R. J.
, 2001, “
The Mechanical Behavior of Vascular Grafts: A Review
,”
J. Biomater. Appl.
0885-3282,
15
, pp.
241
278
.
3.
Bonert
,
M.
,
Myers
,
J. G.
,
Fremes
,
S.
,
Williams
,
J.
, and
Ethier
,
C. R.
, 2002, “
A Numerical Study of Blood Flow in Coronary Artery Bypass Graft Side-to-Side Anastomoses
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
599
611
.
4.
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
, 2008, “
Blood Flow in End-to-Side Anastomosis
,”
Annu. Rev. Fluid Mech.
0066-4189,
40
, pp.
367
393
.
5.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
6.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
,
Rodway
,
N. V.
,
Gobin
,
A.
, and
Rittgers
,
S. E.
, 2001, “
Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anastomoses: An In Vivo Model Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
464
473
.
7.
Loth
,
F.
,
Jones
,
S. A.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Nassar
,
R. F.
,
Glagov
,
S.
, and
Bassiouny
,
H. S.
, 2002, “
Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
44
51
.
8.
DePaola
,
N.
,
Gimbrone
,
M. A. J.
,
Davies
,
P. F.
, and
Dewey
,
C. F. J.
, 1992, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
1049-8834,
12
, pp.
1254
1257
.
9.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
10.
Ross Ethier
,
C.
,
Steinmana
,
D. A.
,
Zhang
,
X.
,
Karpika
,
S. R.
, and
Ojhaa
,
M.
, 1998, “
Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns
,”
J. Biomech.
0021-9290,
31
, pp.
609
617
.
11.
Ross Ethier
,
C.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. G.
, and
Ojha
,
M.
, 2000, “
Steady Flow Separation Patterns in a 45 Degree Junction
,”
J. Fluid Mech.
0022-1120,
411
, pp.
1
38
.
12.
Sherwin
,
S. J.
,
Shah
,
O.
,
Doorly
,
D. J.
,
Peiro
,
J.
,
Papaharilaou
,
Y.
,
Watkins
,
N.
,
Caro
,
C. G.
, and
Dumoulin
,
C. L.
, 2000, “
The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
86
95
.
13.
Papaharilaou
,
Y.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
, 2002, “
The Influence of Out-of-Plane Geometry on Pulsatile Flow Within a Distal End-to-Side Anastomosis
,”
J. Biomech.
0021-9290,
35
(
9
), pp.
1225
1239
.
14.
Shu
,
M. C.
, and
Hwang
,
N. H.
, 1988, “
Flow Phenomena in Compliant and Noncompliant Arteriovenous Grafts
,”
ASAIO Trans.
0889-7190,
34
, pp.
519
523
.
15.
Lee
,
S.
,
Smith
,
D. S.
,
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
, 2007, “
Importance of Flow Division on Transition to Turbulence Within an Arteriovenous Graft
,”
J. Biomech.
0021-9290,
40
, pp.
981
992
.
16.
Sottiurai
,
V. S.
,
Yao
,
J. S. T.
,
Batson
,
R. C.
,
Sue
,
S. L.
,
Jones
,
R.
, and
Nakamura
,
Y. A.
, 1989, “
Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis
,”
Ann. Vasc. Surg.
0890-5096,
3
, pp.
26
33
.
17.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
, 1992, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
0741-5214,
15
, pp.
708
716
.
18.
Haruguchi
,
H.
, and
Teraoka
,
S.
, 2003, “
Intimal Hyperplasia and Hemodynamic Factors in Arterial Bypass and Arteriovenous Grafts: A Review
,”
Int. J. Artif. Organs
0391-3988,
6
, pp.
227
235
.
19.
Giordana
,
S.
,
Sherwin
,
S. J.
,
Peiro
,
J.
,
Doorly
,
D. J.
,
Crane
,
J. S.
,
Lee
,
K. E.
,
Cheshire
,
N. J. W.
, and
Caro
,
C. G.
, 2005, “
Local and Global Geometric Influence on Steady Flow in Distal Anastomoses of Peripheral Bypass Grafts
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1087
1098
.
20.
Tseng
,
H.
,
Peterson
,
T. E.
, and
Berk
,
B. C.
, 1995, “
Fluid Shear Stress Stimulates Mitogen-Activated Protein Kinase in Endothelial Cells
,”
Circ. Res.
0009-7330,
77
, pp.
869
878
.
21.
Kipshidze
,
N.
,
Dangas
,
G.
,
Tsapenko
,
M.
,
Moses
,
J.
,
Leon
,
M. B.
,
Kutryk
,
M.
, and
Serruys
,
P.
, 2004, “
Role of the Endothelium in Modulating Neointimal Formation: Vasculoprotective Approaches to Attenuate Restenosis After Percutaneous Coronary Intervention
,”
J. Am. Coll. Cardiol.
0735-1097,
44
, pp.
733
739
.
22.
May-Newman
,
K.
,
Hillen
,
B.
, and
Dembitsky
,
W.
, 2006, “
Effect of Left Ventricular Assist Device Outflow Conduit Anastomosis Location on Flow Patterns in the Native Aorta
,”
ASAIO J.
1058-2916,
52
, pp.
132
139
.
23.
Litwak
,
K. N.
,
Koenig
,
S. C.
,
Tsukui
,
H.
,
Kihara
,
S.
,
Wu
,
Z.
, and
Pantalos
,
G. M.
, 2004, “
Effects of Left Ventricular Assist Device Support and Outflow Graft Location Upon Aortic Blood Flow
,”
ASAIO J.
1058-2916,
50
, pp.
432
437
.
24.
Litwak
,
K. N.
,
Koenig
,
S. C.
,
Cheng
,
R. C.
,
Giridharan
,
G. A.
,
Gillars
,
K. J.
, and
Pantalos
,
G. M.
, 2005, “
Ascending Aorta Outflow Graft Location and Pulsatile Ventricular Assist Provide Optimal Hemodynamic Support in an Adult Mock Circulation
,”
Artif. Organs
0160-564X,
29
, pp.
629
635
.
25.
Yang
,
N.
,
Deutsch
,
S.
,
Paterson
,
E. G.
, and
Manning
,
K. B.
, 2009, “
Numerical Study of Blood Flow at the End-to-Side Anastomosis of a Left Ventricular Assist Device for Adult Patient
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
111005
.
26.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
, 2006, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5685
5706
.
27.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
28.
Chandran
,
K. B.
, 1993, “
Flow Dynamics in the Human Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
611
616
.
29.
Machii
,
M.
, and
Becker
,
A. E.
, 1997, “
Morphologic Features of the Normal Aortic Arch in Neonates, Infants, and Children Pertinent to Growth
,”
Ann. Thorac. Surg.
0003-4975,
64
, pp.
511
515
.
30.
Connell
,
J. M.
,
Khalapyan
,
T.
,
Myers
,
J. L.
,
Rosenberg
,
G.
, and
Weiss
,
W. J.
, 2007, “
Anatomic Fit Assessment for the Penn State Pediatric Ventricular Assist Device
,”
ASAIO J.
1058-2916,
53
, pp.
687
691
.
31.
Driscoll
,
R. J.
, and
Kennedy
,
L. A.
, 1983, “
A Model for the Turbulent Energy Spectrum
,”
Phys. Fluids
1070-6631,
26
, pp.
1228
1233
.
32.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 1997, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
9
, pp.
1416
1429
.
33.
Fureby
,
C.
, and
Grinstein
,
F. F.
, 2002, “
Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows
,”
J. Comput. Phys.
0021-9991,
181
(
1
), pp.
68
97
.
34.
Grinstein
,
F. F.
,
Fureby
,
C.
, and
DeVore
,
C. R.
, 2005, “
On MILES Based on Flux-Limiting Algorithm
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
1043
1051
.
35.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2007, “
On Flux-Limiting-Based Implicit Large Eddy Simulation
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
1483
1492
.
36.
Pantalos
,
G. M.
,
Giridharan
,
G.
,
Colyer
,
J.
,
Mitchell
,
M.
,
Speakman
,
J.
,
Lucci
,
C.
,
Johnson
,
G.
,
Gartner
,
M.
, and
Koenig
,
S. C.
, 2007, “
Effect of Continuous and Pulsatile Flow Left Ventricular Assist on Pulsatility in a Pediatric Animal Model of Left Ventricular Dysfunction: Pilot Observations
,”
ASAIO J.
1058-2916,
53
, pp.
385
391
.
37.
Kent
,
A. L.
,
Kecskes
,
Z.
,
Shadbolt
,
B.
, and
Falk
,
M. C.
, 2007, “
Blood Pressure in the First Year of Life in Healthy Infants Born at Term
,”
Pediatr. Nephrol.
0931-041X,
22
, pp.
1743
1749
.
38.
Fogel
,
M. A.
,
Weinberg
,
P. M.
,
Rychik
,
J.
,
Hubbard
,
A.
,
Jacobs
,
M.
,
Spray
,
T. L.
, and
Haselgrove
,
J.
, 1999, “
Caval Contribution to Flow in the Branch Pulmonary Arteries of Fontan Patients With a Novel Application of Magnetic Resonance Presaturation Pulse
,”
Circulation
0009-7322,
99
(
9
), pp.
1215
1221
.
39.
2008,
OPENFOAM 1.5 User Guide
,
OpenCFD Ltd.
,
UK
.
40.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
41.
Zamir
,
M.
, 2000,
The Physics of Pulsatile Flow
,
Springer-Verlag
,
New York
.
42.
Higdon
,
A.
,
Ohlsen
,
E.
, and
Stiles
,
W. B.
, 1988,
Mechanics of Materials
,
Wiley
,
New York
.
43.
Healy
,
T. M.
,
Ellis
,
J. T.
,
Fontaine
,
A. A.
,
Jarrett
,
C. A.
, and
Yoganathan
,
A. P.
, 1997, “
An Automated Method for Analysis and Visualization of Laser Doppler Velocimetry Data
,”
Ann. Biomed. Eng.
0090-6964,
25
(
2
), pp.
335
343
.
44.
Fogel
,
M. A.
,
Weinberg
,
P. M.
, and
Haselgrove
,
J.
, 2002, “
Nonuniform Flow Dynamics in the Aorta of Normal Children: A Simplified Approach to Measurement Using Magnetic Resonance Velocity Mapping
,”
J. Magn. Reson Imaging
1053-1807,
15
(
6
), pp.
672
678
.
45.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
, 2002, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
378
387
.
46.
Pekkan
,
K.
,
Dur
,
O.
,
Sundareswaran
,
K.
,
Kanter
,
K.
,
Fogel
,
M.
,
Yoganathan
,
A.
, and
Undar
,
A.
, 2008, “
Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
6
), p.
061012
.
47.
Weinstein
,
G. S.
, 2001, “
Left Hemispheric Strokes in Coronary Surgery: Implications for End-Hole Aortic Cannulas
,”
Ann. Thorac. Surg.
0003-4975,
71
(
1
), pp.
128
132
.
48.
Grooters
,
R. K.
,
Ver Steeg
,
D. A.
,
Stewart
,
M. J.
,
Thieman
,
K. C.
, and
Schneider
,
R. F.
, 2003, “
Echocardiographic Comparison of the Standard End-Hole Cannula, the Soft-Flow Cannula, and the Dispersion Cannula During Perfusion Into the Aortic Arch
,”
Ann. Thorac. Surg.
0003-4975,
75
, pp.
1919
1923
.
49.
Hellums
,
J. D.
, and
Hardwick
,
R. A.
, 1981,
The Rheology of Blood Vessels and Associated Tissues
,
Sijthoff and Noordhoff
,
Alphen aan den Rijn
, pp.
160
183
.
50.
Sallam
,
A. M.
, and
Hwang
,
N. H.
, 1984, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
0006-355X,
21
(
6
), pp.
783
797
.
51.
Huo
,
Y.
,
Guo
,
X.
, and
Kassab
,
G. S.
, 2008, “
The Flow Field Along the Entire Length of Mouse Aorta and Primary Branches
,”
Ann. Biomed. Eng.
0090-6964,
36
(
5
), pp.
685
699
.
52.
Ojha
,
M.
, 1993, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1377
1388
.
53.
Li
,
X. M.
, and
Rittgers
,
S. E.
, 2001, “
Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
270
276
.
54.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
, 1998, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
5
), pp.
686
692
.
55.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
0098-7484,
282
(
21
), pp.
2035
2042
.
56.
Goubergrits
,
L.
,
Kertzscher
,
U.
,
Schoneberg
,
B.
,
Wellnhofer
,
E.
,
Petz
,
C.
, and
Hege
,
H. C.
, 2008, “
CFD Analysis in an Anatomically Realistic Coronary Artery Model Based on Non-Invasive 3D Imaging: Comparison of Magnetic Resonance Imaging With Computed Tomography
,”
Int. J. Cardiovasc. Imaging
,
24
(
4
), pp.
411
421
.
57.
Glor
,
F. P.
,
Ariff
,
B.
,
Hughes
,
A. D.
,
Crowe
,
L. A.
,
Verdonck
,
P. R.
,
Barratt
,
D. C.
,
Mc
,
G.
,
Thom
,
S. A.
,
Firmin
,
D. N.
, and
Xu
,
X. Y.
, 2004, “
Image-Based Carotid Flow Reconstruction: A Comparison Between MRI and Ultrasound
,”
Physiol. Meas
0967-3334,
25
(
6
), pp.
1495
1509
.
58.
Ballyk
,
P. D.
,
Walsh
,
C.
,
Butany
,
J.
, and
Ojha
,
M.
, 1997, “
Compliance Mismatch May Promote Graft-Artery Intimal Hyperplasia by Altering Suture-Line Stresses
,”
J. Biomech.
0021-9290,
31
(
3
), pp.
229
237
.
You do not currently have access to this content.