Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, “Stress Strain History Relations of Soft Tissues in Simple Elongation,” in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181–207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter.

1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
, pp.
930
934
.
2.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
, 2006, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
1063-4584,
14
(
6
), pp.
571
579
.
3.
Crockett
,
R.
,
Roos
,
S.
,
Rossbach
,
P.
,
Dora
,
C.
,
Born
,
W.
, and
Troxler
,
H.
, 2005, “
Imaging of the Surface of Human and Bovine Articular Cartilage With ESEM and AFM
,”
Tribol. Lett.
1023-8883,
19
(
4
), pp.
311
317
.
4.
D’Acunto
,
M.
,
Ciardelli
,
G.
,
Narducci
,
P.
,
Rechichi
,
A.
, and
Giusti
,
P.
, 2005, “
Phospholipid-Polyurethane Adhesion Force Observed by Atomic Force Microscopy
,”
Mater. Lett.
0167-577X,
59
(
13
), pp.
1627
1633
.
5.
Park
,
S.
,
Costa
,
K. D.
, and
Ateshian
,
G. A.
, 2004, “
Microscale Frictional Response of Bovine Articular Cartilage From Atomic Force Microscopy
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1679
1687
.
6.
Takai
,
E.
,
Costa
,
K. D.
,
Shaheen
,
A.
,
Hung
,
C. T.
, and
Guo
,
X. E.
, 2005, “
Osteoblast Elastic Modulus Measured by Atomic Force Microscopy Is Substrate Dependent
,”
Ann. Biomed. Eng.
0090-6964,
33
(
7
), pp.
963
971
.
7.
Stolz
,
M.
,
Raiteri
,
R.
,
Daniels
,
A. U.
,
VanLandingham
,
M. R.
, and
Baschong
,
W.
, 2004, “
Dynamic Elastic Modulus of Porcine Articular Cartilage Determination at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
86
, pp.
3269
3283
.
8.
Yeh
,
M. L.
, and
Luo
,
Z. P.
, 2004, “
The Structure of Proteoglycan Aggregate Determined by Atomic Force Microscopy
,”
Scanning
0161-0457,
26
(
6
), pp.
273
276
.
9.
Rotsch
,
C.
,
Jacobson
,
K.
, and
Radmacher
,
M.
, 1999, “
Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscope
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
921
926
.
10.
Radmacher
,
M.
,
Tillmann
,
R. W.
, and
Gaub
,
H. E.
, 1993, “
Imaging Viscoelasticity by Force Modulation With the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
64
, pp.
735
742
.
11.
A-Hassan
,
E.
,
Heinz
,
W. F.
,
Antonik
,
M. D.
,
D’Costa
,
N. P.
,
Nageswaran
,
S.
,
Schoenenberger
,
C. -A.
, and
Hoh
,
J. H.
, 1998, “
Relative Microelastic Mapping of Living Cells by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
74
, pp.
1564
1578
.
12.
Haga
,
H.
,
Nagayama
,
M.
,
Kawabata
,
K.
,
Ito
,
E.
,
Ushiki
,
T.
, and
Sambongilee
,
T.
, 2000, “
Time-Lapse Viscoelastic Imaging of Living Fibroblasts Using Force Modulation Mode in AFM
,”
J. Electron Microsc.
0022-0744,
49
, pp.
473
481
.
13.
Costa
,
K. D.
,
Sim
,
A. J.
, and
Yin
,
F. C. P.
, 2006, “
Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
2
), pp.
176
184
.
14.
Haga
,
H.
,
Sasaki
,
S.
,
Morimoto
,
M.
,
Kawabata
,
K.
,
Ito
,
E.
,
Abe
,
K.
, and
Sambongi
,
T.
, 1998, “
Imaging Elastic Properties of Soft Materials Immersed in Water Using Force Modulation Mode in Atomic Force Microscopy
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
37
(
6B
), pp.
3860
3863
.
15.
Nitta
,
T.
,
Endo
,
Y.
,
Haga
,
H.
, and
Kawabata
,
K.
, 2003, “
Microdomain Structure of Agar Gels Observed by Mechanical-Scanning Probe Microscopy
,”
J. Electron Microsc.
0022-0744,
52
(
3
), pp.
277
281
.
16.
Uricanu
,
V. I.
,
Duits
,
M. H. G.
,
Nelissen
,
R. M. F.
,
Bennink
,
M. L.
, and
Mellema
,
J.
, 2003, “
Local Structure and Elasticity of Soft Gelatin Gels Studied With Atomic Force Microscopy
,”
Langmuir
0743-7463,
19
(
20
), pp.
8182
8194
.
17.
Dvorak
,
J. A.
, and
Nagao
,
E.
, 1998, “
Kinetic Analysis of the Mitotic Cycle of Living Vertebrate Cells by Atomic Force Microscopy
,”
Exp. Cell Res.
0014-4827,
242
, pp.
69
74
.
18.
Barbee
,
K. A.
,
Davies
,
P. F.
, and
Lal
,
R.
, 1994, “
Shear Stress-Induced Reorganisaion of the Surface Topography of Living Endothelial Cells Imaged by Atomic Force Microscopy
,”
Circ. Res.
0009-7330,
74
, pp.
163
171
.
19.
Sun
,
Y.
,
Akhremitchev
,
B.
, and
Walker
,
G. C.
, 2004, “
Using the Adhesive Interaction Between Atomic Force Microscopy Tips and Polymer Surfaces to Measure the Elastic Modulus of Compliant Samples
,”
Langmuir
0743-7463,
20
, pp.
5837
5845
.
20.
Okajima
,
T.
,
Tanaka
,
M.
,
Tsukiyama
,
S.
,
Kadowaki
,
T.
,
Yamamoto
,
S.
,
Shimomura
,
M.
, and
Tokumot
,
H.
, 2007, “
Stress Relaxation Measurement of Fibroblast Cells With Atomic Force Microscopy
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
46
(
8B
), pp.
5552
5555
.
21.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
, 2007, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
0006-3495,
92
(
5
), pp.
1784
1791
.
22.
Fung
,
Y. C.
, 1972, “
Stress Strain History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundation and Objectives
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
181
207
.
23.
Neubert
,
H. K. P.
, 1963, “
A Simple Model Representing Internal Damping in Solid Materials
,”
Aeronaut. Q.
0001-9259,
14
, pp.
187
210
.
24.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
, 2000, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
15
22
.
25.
Abramowitch
,
S. D.
, and
Woo
,
S. L.-Y.
, 2004, “
An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
92
97
.
26.
Iatridis
,
J. C.
,
Wu
,
J.
,
Yandow
,
J. A.
, and
Langevin
,
H. M.
, 2003, “
Subcutaneous Tissue Mechanical Behavior is Linear and Viscoelastic Under Uniaxial Tension
,”
Connect. Tissue Res.
0300-8207,
44
, pp.
208
217
.
27.
Kwan
,
M. K.
,
Lin
,
T. H.-C.
, and
Woo
,
S. L.-Y.
, 1993, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
, pp.
447
452
.
28.
Carew
,
E. O.
,
Barber
,
J. E.
, and
Vesely
,
I.
, 2000, “
Role of Preconditioning and Recovery Time in Repeated Testing of Aortic Valve Tissues: Validation Through Quasilinear Viscoelastic Theory
,”
ASME J. Biomed. Eng.
,
28
, pp.
1093
1100
. 0141-5425
29.
Best
,
T. M.
,
McElhaney
,
J.
,
Garrett
,
W. E.
, Jr.
, and
Myers
,
B. S.
, 1994, “
Characterization of the Passive Responses of Live Skeletal Muscle Using the Quasi-Linear Theory of Viscoelasticity
,”
J. Biomech.
0021-9290,
27
, pp.
413
419
.
30.
Bischoff
,
J. E.
, 2006, “
Reduced Parameter Formulation for Incorporating Fiber Level Viscoelasticity Into Tissue Level Biomechanical Models
,”
J. Biomed. Eng.
0141-5425,
34
, pp.
1164
1172
.
31.
Myers
,
B. S.
,
McElhaney
,
J. H.
, and
Doherty
,
B. J.
, 1991, “
The Viscoelastic Responses of the Human Cervical-Spine in Torsion—Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
J. Biomech.
0021-9290,
24
(
9
), pp.
811
817
.
32.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
, 1986, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
0021-9290,
19
(
1
), pp.
27
37
.
33.
Hertz
,
H.
, 1882, “
On Contact of Elastic Solids
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
34.
Johnson
,
K. L.
, 1985,
Contact Mechanics
, 1st ed.,
Cambridge University Press
,
Cambridge, England
.
35.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, England
.
36.
Mathworks Inc.
, 2004, MATLAB Documentation, 7.0 ed.
37.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
293
298
.
38.
Veeco Insruments Inc.
, 2004, Multimode Instructions Manual.
39.
Hutter
,
J. L.
, and
Bechhoefer
,
J.
, 1993, “
Calibration of Atomic-Force Microscope Tips
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
1868
1873
.
40.
Butt
,
H. -J.
, and
Jaschke
,
M.
, 1995, “
Calculations of Thermal Noise in Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
6
, pp.
1
7
.
41.
Levy
,
R.
, and
Maaloum
,
M.
, 2002, “
Measuring the Spring Constant of Atomic Force Microscope Cantilevers: Thermal Fluctuations and Other Methods
,”
Nanotechnology
0957-4484,
13
, pp.
33
37
.
42.
Stark
,
R. W.
,
Drobek
,
T.
, and
Heckl
,
W. M.
, 2001, “
Thermalmechanical Noise of a Free V-Shaped Cantilever for Atomic-Force Microscopy
,”
Ultramicroscopy
0304-3991,
86
, pp.
207
215
.
43.
Tripathy
,
S.
,
Berger
,
E. J.
, and
Vemaganti
,
K.
, 2007, “
AFM Indentation and Material Property Identification of Soft Hydrogels
,”
ASME International Design Engineering Technical Conferences
.
44.
Rico
,
F.
,
Roca-Cusachs
,
P.
,
Sunyer
,
R.
,
Farre
,
R.
, and
Navajas
,
D.
, 2007, “
Cell Dynamic Adhesion and Elastic Properties Probed With Cylindrical Atomic Force Microscopy Cantilever Tips
,”
J. Mol. Recognit.
0952-3499,
20
(
6
), pp.
459
466
.
45.
Thormann
,
E.
,
Simonsen
,
A. C.
,
Hansen
,
P. L.
, and
Mouritsen
,
O. G.
, 2008, “
Interactions Between a Polystyrene Particle and Hydrophilic and Hydrophobic Surfaces in Aqueous Solutions
,”
Langmuir
0743-7463,
24
(
14
), pp.
7278
7284
.
46.
Woo
,
S. L.-Y.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
, 1990, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
0736-0266,
8
, pp.
712
721
.
47.
Roters
,
A.
, and
Johannsmann
,
D.
, 1996, “
Distance-Dependent Noise Measurements in Scanning Force Microscopy
,”
J. Phys.: Condens. Matter
0953-8984,
8
, pp.
7561
7577
.
48.
Matei
,
G. A.
,
Thoreson
,
E. J.
,
Pratt
,
J. R.
,
Newell
,
D. B.
, and
Burnham
,
N. A.
, 2006, “
Precision and Accuracy of Thermal Calibration of Atomic Force Microscopy Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
77
(
8
), p.
83703
.
You do not currently have access to this content.