Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer’s propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.

1.
Kemper
,
H. C. G.
,
Verschuur
,
R.
,
Clarys
,
J. P.
, and
Rijken
,
H.
, 1976, “
Efficiency in Swimming the Front Crawl
,”
Biomechanics
,
P. V.
Komi
, ed.,
University Park Press
,
Baltimore
, Vol.
5-B
, pp.
243
249
.
2.
Kemper
,
H. C. G.
,
Clarys
,
J. P.
, and
Jiskoot
,
J.
, 1983, “
Total Efficiency and Swimming Drag in Swimming the Front Crawl
,”
Biomechanics and Medicine in Swimming
,
A. P.
Hollander
,
P. A.
Huijing
, and
G.
de Groot
, eds.,
Human Kinetics
,
Champaign, IL
, pp.
199
206
.
3.
Adrian
,
M. J.
,
Singh
,
M.
, and
Karpovich
,
P. V.
, 1966, “
Energy Cost of Leg Kick, Arm Stroke, and Whole Crawl Stroke
,”
J. Appl. Physiol.
0021-8987,
21
, pp.
1763
1766
.
4.
Toussaint
,
H. M.
,
Hollander
,
A. P.
,
de Groot
,
G.
,
van Ingen Schenau
,
G. J.
,
Vervoorn
,
K.
,
de Best
,
H.
,
Meulemans
,
T.
, and
Schreurs
,
W.
, 1988, “
Measurement of Efficiency in Swimming Man
,”
Swimming Science
,
B. E.
Ungerechts
,
K.
Reischle
, and
K.
Wilke
, eds.,
Human Kinetics
,
Champaign, IL
, Vol.
5
, pp.
45
52
.
5.
Nicolas
,
G.
,
Bideau
,
B.
,
Colobert
,
B.
, and
Berton
,
E.
, 2007, “
How are Strouhal Number, Drag, and Efficiency Adjusted in High Level Underwater Monofin-Swimming?
Hum. Mov. Sci.
0167-9457,
26
, pp.
426
442
.
6.
Lighthill
,
M. J.
, 1975,
Mathematical Biofluiddynamics
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
7.
Fish
,
F. E.
, 1998, “
Comparative Kinematics and Hydrodynamics of Odontocete Cetaceans: Morphological and Ecological Correlates With Swimming Performance
,”
J. Exp. Biol.
0022-0949,
201
, pp.
2867
2877
.
8.
Mittal
,
R.
, and
Iaccarino
,
G.
, 2005, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
239
261
.
9.
Dong
,
H.
,
Mittal
,
R.
, and
Najjar
,
F. M.
, 2006, “
Wake Topology and Hydrodynamic Performance of Low-Aspect-Ratio Flapping Foils
,”
J. Fluid Mech.
0022-1120,
566
, pp.
309
343
.
10.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbeck
,
A.
, 2008, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
0021-9991,
227
, pp.
4825
4852
.
11.
Ramakrishnan
,
S.
,
Mittal
,
R.
,
Lauder
,
G. V.
, and
Bozkurttas
,
M.
, “
Analysis of Maneuvering Fish Fin Hydrodynamics Using an Immersed Boundary Method
,” AIAA-2008-3717, 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, June 2008.
12.
von Loebbecke
,
A.
,
Mittal
,
R.
,
Mark
,
R.
, and
Hahn
,
J.
, 2009, “
A Computational Method for Analysis of Underwater Dolphin Kick Hydrodynamics in Human Swimming
,”
Sports Biomechanics
,
8
(
1
), pp.
60
77
.
13.
von Loebbecke
,
A.
, 2008, “
Computational Modeling and Analysis of the Hydrodynamics of Competitive Human Swimming
,” D.Sc. thesis, Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC.
14.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M. A.
, 1993, “
Optimal Thrust Development in Oscillating Foils With Application to Fish Propulsion
,”
J. Fluids Struct.
0889-9746,
7
, pp.
205
224
.
15.
Arellano
,
R.
,
Terrés-Nicol
,
J. M.
, and
Redondo
,
J. M.
, 2006, “
Fundamental Hydrodynamics of Swimming Propulsion
,”
J. Sports Sci.
0264-0414,
10
, pp.
15
20
.
16.
von Loebbecke
,
A.
,
Mittal
,
R.
,
Fish
,
F.
, and
Mark
,
R.
, 2009, “
A Comparison of the Kinematics of the Dolphin Kick in Humans and Cetaceans
,”
Hum. Mov. Sci.
0167-9457,
28
, pp.
99
112
.
17.
Sargeant
,
A. J.
,
Hoinville
,
E.
, and
Young
,
A.
, 1981, “
Maximum Leg Force and Power Output During Short-Term Dynamic Exercise
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
51
, pp.
1175
1182
.
18.
Hertel
,
H.
, 1966,
Structure, Form, Movement
,
Reinhold
,
New York
.
19.
Lyttle
,
A. D.
,
Blanksby
,
B. A.
,
Elliott
,
B. C.
, and
Lloyd
,
D. G.
, 1998, “
The Effect of Depth and Velocity on Drag During the Streamline Glide
,”
Journal of Swimming Research
,
13
, pp.
15
22
.
20.
Fish
,
F. E.
, 1993, “
Power Output and Propulsive Efficiency of Swimming Bottlenose Dolphins (Tursiops truncatus)
,”
J. Exp. Biol.
0022-0949,
185
, pp.
179
193
.
You do not currently have access to this content.