Hip resurfacing is an alternative to total hip arthroplasty in which the femoral head surface is replaced with a metallic shell, thus preserving most of the proximal femoral bone stock. Accidental notching of the femoral neck during the procedure may predispose it to fracture. We examined the effect of neck notching on the strength of the proximal femur. Six composite femurs were prepared without a superior femoral neck notch, six were prepared in an inferiorly translated position to create a 2 mm notch, and six were prepared with a 5 mm notch. Six intact synthetic femurs were also tested. The samples were loaded to failure axially. A finite element model of a composite femur with increasing superior notch depths computed maximum equivalent stress and strain distributions. Experimental results showed that resurfaced synthetic femurs were significantly weaker than intact femurs (mean failure of 7034 N, p<0.001). The 2 mm notched group (mean failure of 4034 N) was significantly weaker than the un-notched group (mean failure of 5302 N, p=0.018). The 5 mm notched group (mean failure of 2808 N) was also significantly weaker than both the un-notched and the 2 mm notched groups (p<0.001, p=0.023, respectively). The finite element model showed the maximum equivalent strain in the superior reamed cancellous bone increasing with corresponding notch size. Fracture patterns inferred from equivalent stress distributions were consistent with those obtained from mechanical testing. A superior notch of 2 mm weakened the proximal femur by 24%, and a 5 mm notch weakened it by 47%. The finite element analysis substantiates this showing increasing stress and strain distributions within the prepared femoral neck with increasing notch depth.

1.
Daniel
,
J.
,
Pynsent
,
P. B.
, and
McMinn
,
D. J.
, 2004, “
Metal-on-Metal Resurfacing of the Hip in Patients Under the Age of 55 Years With Osteoarthritis
,”
J. Bone Joint Surg. Br.
,
86
(
2
), pp.
177
184
. 0301-620X
2.
Treacy
,
R. B.
,
McBryde
,
C. W.
, and
Pynsent
,
P. B.
, 2005, “
Birmingham Hip Resurfacing Arthroplasty. A Minimum Follow-Up of Five Years
,”
J. Bone Joint Surg. Br.
,
87-b
(
2
), pp.
167
70
. 0301-620X
3.
Amstutz
,
H. C.
,
Campbell
,
P. A.
, and
Le Duff
,
M. J.
, 2004, “
Fracture of the Neck of the Femur After Surface Arthroplasty of the Hip
,”
J. Bone Jt. Surg., Am. Vol.
,
86-A
(
9
), pp.
1874
1877
. 0021-9355
4.
De Smet
,
K. A.
, 2005, “
Belgium Experience With Metal-on-Metal Surface Arthroplasty
,”
Orthop. Clin. North Am.
,
36
(
2
), pp.
203
213
. 0030-5898
5.
Marker
,
D. R.
,
Seyler
,
T. M.
,
Jinnah
,
R. H.
,
Delanois
,
R. E.
,
Ulrich
,
S. D.
, and
Mont
,
M. A.
, 2007, “
Femoral Neck Fractures After Metal-on-Metal Total Hip Resurfacing: A Prospective Cohort Study
,”
J. Arthroplasty
,
22
(
7
), pp.
66
71
. 0883-5403
6.
McMinn
,
D.
, and
Daniel
,
J.
, 2006, “
History and Modern Concepts in Surface Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
220
(
2
), pp.
239
251
. 0954-4119
7.
Shimmin
,
A. J.
, and
Back
,
D.
, 2005, “
Femoral Neck Fractures Following Birmingham Hip Resurfacing: A National Review of 50 Cases
,”
J. Bone Joint Surg. Br.
,
87-b
(
4
), pp.
463
464
. 0301-620X
8.
Mont
,
M. A.
,
Etienne
,
G.
,
Thomas
,
C. M.
,
Bezwada
,
H.
, and
Ragland
,
P.
, 2005, “
The Results of Metal-on-Metal Resurfacing Hip Arthroplasty: Learning Curve Stratification of Results
,” AAOS.
9.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
(
6
), pp.
773
781
.
10.
Anglin
,
C.
,
Tonetti
,
J.
,
Beadon
,
K.
,
Hodgson
,
A. J.
,
Greidanus
,
N. V.
,
Duncan
,
C. P.
,
Masri
,
B. A.
, and
Garbuz
,
D. S.
, 2006, “
Biomechanical and Geometrical Consequences of Femoral Resurfacing Component Placement
,”
Proceedings of the Fifth Annual Meeting CAOS International
, Helsinki, Finland, Jun. 19–22, 2005, pp.
2
4
.
11.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
12
19
.
12.
Duda
,
G. N.
,
Heller
,
M.
,
Albinger
,
J.
,
Schulz
,
O.
,
Schneider
,
E.
, and
Claes
,
L.
, 1998, “
Influence of Muscle Forces on Femoral Strain Distribution
,”
J. Biomech.
0021-9290,
31
(
9
), pp.
841
846
.
13.
Taylor
,
M. E.
,
Tanner
,
K. E.
,
Freeman
,
M. A.
, and
Yettram
,
A. L.
, 1996, “
Stress and Strain Distribution Within the Intact Femur: Compression or Bending?
Med. Eng. Phys.
1350-4533,
18
(
2
), pp.
122
131
.
14.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
(
7
), pp.
859
871
.
15.
16.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
1350-4533,
26
(
2
), pp.
93
108
.
17.
Zalzal
,
P.
,
Backstein
,
D.
,
Gross
,
A. E.
, and
Papini
,
M.
, 2006, “
Notching of the Anterior Femoral Cortex During Total Knee Arthroplasty Characteristics That Increase Local Stresses
,”
J. Arthroplasty
,
21
(
5
), pp.
737
743
. 0883-5403
18.
Morlock
,
M. M.
,
Bishop
,
N.
,
Ruther
,
W.
,
Delling
,
G.
, and
Hahn
,
M.
, 2006, “
Biomechanical, Morphological, and Histological Analysis of Early Failures in Hip Resurfacing Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
220
(
2
), pp.
333
344
. 0954-4119
19.
Long
,
J. P.
, and
Bartel
,
D. L.
, 2006, “
Surgical Variables Affect the Mechanics of a Hip Resurfacing System
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
115
122
. 0009-921X
20.
Ong
,
K. L.
,
Kurtz
,
S. M.
,
Manley
,
M. T.
,
Rushton
,
N.
,
Mohammed
,
N. A.
, and
Field
,
R. E.
, 2006, “
Biomechanics of the Birmingham Hip Resurfacing Arthroplasty
,”
J. Bone Joint Surg. Br.
,
88-b
(
8
), pp.
1110
1115
. 0301-620X
21.
Radcliffe
,
I. A.
, and
Taylor
,
M.
, 2007, “
Investigation Into the Effect of Varus-Valgus Orientation on Load Transfer in the Resurfaced Femoral Head: A Multi-Femur Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
7
), pp.
780
786
. 0268-0033
22.
Viceconti
,
M.
,
Bellingeri
,
L.
,
Cristofolini
,
L.
, and
Toni
,
A.
, 1998, “
A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs
,”
Med. Eng. Phys.
1350-4533,
20
(
1
), pp.
1
10
.
23.
Taylor
,
M.
, 2006, “
Finite Element Analysis of the Resurfaced Femoral Head
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
220
(
2
), pp.
289
297
. 0954-4119
24.
Watanabe
,
Y.
,
Shiba
,
N.
,
Matsuo
,
S.
,
Higuchi
,
F.
,
Tagawa
,
Y.
, and
Inoue
,
A.
, 2000, “
Biomechanical Study of the Resurfacing Hip Arthroplasty: Finite Element Analysis of the Femoral Component
,”
J. Arthroplasty
,
15
(
4
), pp.
505
511
. 0883-5403
25.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
26.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
, 2004, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
27
35
.
27.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
, 1999, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1005
1012
.
28.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
(
5
), pp.
569
577
.
29.
Amstutz
,
H. C.
,
Beaulé
,
P. E.
,
Dorey
,
F. J.
,
Le Duff
,
M. J.
,
Campbell
,
P. A.
, and
Gruen
,
T. A.
, 2004, “
Metal-on-Metal Hybrid Surface Arthroplasty: Two to Six-Year Follow-Up Study
,”
J. Bone Jt. Surg., Am.
,
86-A
(
1
), pp.
28
39
. 0021-9355
30.
Beaule
,
P. E.
,
Dorey
,
F. J.
,
LeDuff
,
M.
,
Gruen
,
T.
, and
Amstutz
,
H. C.
, 2004, “
Risk Factors Affecting Outcome of Metal-on-Metal Surface Arthroplasty of the Hip
,”
Clin. Orthop. Relat. Res.
,
418
, pp.
87
93
. 0009-921X
31.
Beaule
,
P. E.
,
Lee
,
J. L.
,
Le Duff
,
M. J.
,
Amstutz
,
H. C.
, and
Ebramzadeh
,
E.
, 2004, “
Orientation of the Femoral Component in Surface Arthroplasty of the Hip. A Biomechanical and Clinical Analysis
,”
J. Bone Jt. Surg., Am.
,
86-A
(
9
), pp.
2015
2021
. 0021-9355
32.
Beaule
,
P. E.
, and
Antoniades
,
J.
, 2005, “
Patient Selection and Surgical Technique for Surface Arthroplasty of the Hip
,”
Orthop. Clin. North Am.
,
36
(
2
), pp.
177
185
. 0030-5898
33.
Freeman
,
M. A.
, 1978, “
Total Surface Replacement Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
134
, pp.
2
4
. 0009-921X
34.
Siebel
,
T.
,
Maubach
,
S.
, and
Morlock
,
M. M.
, 2006, “
Lessons Learned From Early Clinical Experience and Results of 300 ASR Hip Resurfacing Implantations
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
220
(
2
), pp.
345
353
. 0954-4119
35.
Beaule
,
P. E.
,
Campbell
,
P. A.
,
Hoke
,
R.
, and
Dorey
,
F.
, 2006, “
Notching of the Femoral Neck During Resurfacing Arthroplasty of the Hip: A Vascular Study
,”
J. Bone Jt. Surg., Br.
,
88-b
(
1
), pp.
35
39
. 0301-620X
36.
Sievanen
,
H.
,
Karstila
,
T.
,
Apuli
,
P.
, and
Kannus
,
P.
, 2007, “
Magnetic Resonance Imaging of the Femoral Neck Cortex
,”
Acta Radiol.
,
48
(
3
), pp.
308
314
. 0001-6926
37.
Bessho
,
M.
,
Ohnishi
,
I.
,
Matsuyama
,
J.
,
Matsumoto
,
T.
,
Imai
,
K.
, and
Nakamura
,
K.
, 2007, “
Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method
,”
J. Biomech.
,
40
(
8
), pp.
1745
1753
. 0021-9290
38.
Cody
,
D. D.
,
Gross
,
G. J.
,
Hou
,
F. J.
,
Spencer
,
H. J.
,
Goldstein
,
S. A.
, and
Fyhrie
,
D. P.
, 1999, “
Femoral Strength is Better Predicted by Finite Element Models Than QCT and DXA
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1013
1020
.
39.
Frankel
,
V. H.
, 1960,
The Femoral Neck
,
Almqvist and Wiksell
,
Uppsala, Sweden
.
40.
Keyak
,
J. H.
,
Kaneko
,
T. S.
,
Tehranzadeh
,
J.
, and
Skinner
,
H. B.
, 2005, “
Predicting Proximal Femoral Strength Using Structural Engineering Models
,”
Clin. Orthop. Relat. Res.
,
437
, pp.
219
228
. 0009-921X
41.
Markolf
,
K. L.
, and
Amstutz
,
H. C.
, 1980, “
Mechanical Strength of the Femur Following Resurfacing and Conventional Total Hip Replacement Procedures
,”
Clin. Orthop. Relat. Res.
,
147
, pp.
170
180
. 0009-921X
42.
Clarke
,
I. C.
, 1982, “
Symposium on Surface Replacement Arthroplasty of the Hip. Biomechanics: Mutifactorial Design Choices—An Essential Compromise?
Orthop. Clin. North Am.
,
13
(
4
), pp.
681
707
. 0030-5898
43.
Anglin
,
C.
,
Masri
,
B. A.
,
Tonetti
,
J.
,
Hodgson
,
A. J.
, and
Greidanus
,
N. V.
, 2007, “
Hip Resurfacing Femoral Neck Fracture Influenced by Valgus Placement
,”
Clin. Orthop. Relat. Res.
,
465
, pp.
71
79
. 0009-921X
44.
Huiskes
,
R.
,
Strens
,
P. H.
,
van Heck
,
J.
, and
Slooff
,
T. J.
, 1985, “
Interface Stresses in the Resurfaced Hip. Finite Element Analysis of Load Transmission in the Femoral Head
,”
Acta Orthop. Scand.
,
56
(
6
), pp.
474
478
. 0001-6470
45.
Huiskes
,
R.
,
Strens
,
P.
,
Vroemen
,
W.
, and
Slooff
,
T. J.
, 1990, “
Post-Loosening Mechanical Behavior of Femoral Resurfacing Prostheses
,”
Clinical Materials
,
6
(
1
), pp.
37
55
. 0267-6605
46.
Shybut
,
G. T.
,
Askew
,
M. J.
,
Hori
,
R. Y.
, and
Stulberg
,
S. D.
, 1980, “
Theoretical and Experimental Studies of Femoral Stresses Following Surface Replacement Hip Arthroplasty
,”
Proc. Inst. Med. Chic
,
33
(
3
), pp.
95
106
. 0091-746X
47.
Waal Malefijt
,
M. C.
, and
Huiskes
,
R. A.
, 1993, “
Clinical, Radiological and Biomechanical Study of the TARA Hip Prosthesis
,”
Arch. Orthop. Trauma Surg.
,
112
(
5
), pp.
220
225
. 0936-8051
You do not currently have access to this content.