A systematic integrated data collection and analysis of kinematic, kinetic, and electromyography (EMG) data allow for the comparison of differences in wheelchair propulsion between able-bodied individuals and persons with paraplegia. Kinematic data from a motion analysis system, kinetic data from force-sensing push rims, and electromyography data from four upper-limb muscles were collected for ten push strokes. Results are as follows: Individuals with paraplegia use a greater percentage of their posterior deltoids, biceps, and triceps in relation to maximal voluntary contraction. These persons also reached peak anterior deltoid firing nearly 10 deg earlier on the push rim, while reaching peak posterior deltoid nearly 10 deg later on the push rim. Able-bodied individuals had no triceps activity in the initial stages of propulsion while their paraplegic groups had activity throughout. Able-bodied participants also had, on average, peak resultant, tangential, and radial forces occurring later on the push rim (in degrees). There are two main conclusions that can be drawn from this integrative investigation: (1) A greater “muscle energy,” as measured by the area under the curve of the percentage of EMG throughout propulsion, results in a greater resultant joint force in the shoulder and elbow, thus potentially resulting in shoulder pathology. (2) Similarly, a greater muscle energy may result in fatigue and play a factor in the development of shoulder pain and pathology over time; fatigue may compromise an effective propulsive stroke placing undue stresses on the joint capsule. Muscle activity differences may be responsible for the observed kinematic and kinetic differences between the two groups. The high incidence of shoulder pain in manual wheelchair users as compared to the general population may be the result of such differences, although the results from this biomedical investigation should be examined with caution. Future research into joint forces may shed light on this. Further investigation needs to focus on whether the pattern of kinematics, kinetics, and muscle activity during wheelchair propulsion is compensatory or evolutionary by tracking individuals longitudinally.

1.
Gellman
,
H.
,
Sie
,
I.
, and
Waters
,
R.
, 1988, “
Late Complications of the Weight-Bearing Upper Extremity in the Paraplegic Patient
,”
Clin. Orthop. Relat. Res.
0009-921X,
233
, pp.
132
135
.
2.
Broadhurst
,
N. A.
,
Barton
,
C. A.
,
Yelland
,
L. N.
,
Martin
,
D. K.
, and
Beilby
,
J. J.
, 2006, “
Managing Shoulder Pain in General Practice
,”
Aust. Fam. Physician
0300-8495,
35
(
9
), pp.
751
752
.
3.
Mitchell
,
C.
,
Adebajo
,
A.
, and
Carr
,
A.
, 2005, “
Shoulder Pain: Diagnosis and Management in General Practice
,”
BMJ
0959-8138,
331
, pp.
1124
1128
.
4.
van der Heijden
,
G. J.
,
van der Windt
,
D. A.
, and
Kleijnen
,
J.
, 1996, “
Steroid Injections for Shoulder Disorders: A Systematic Review of Randomised Controlled Trials
,”
Br. J. Gen. Pract.
0960-1643
46
, pp.
309
316
.
5.
Curtis
,
K. A.
,
Drysdale
,
G. A.
,
Lanza
,
R. D.
,
Kolber
,
M.
,
Vitolo
,
R. S.
, and
West
,
R.
, 1999, “
Shoulder Pain in Wheelchair Users with Tetraplegia and Paraplegia
,”
Arch. Phys. Med. Rehabil.
0003-9993,
80
(
4
), pp.
453
457
.
6.
Subbarao
,
J. V.
,
Klopfstein
,
M. D.
, and
Turpin
,
R.
, 1994, “
Prevalance and Impact of Wrist and Shoulder Pain in Patients With Spinal COrd Injury
,”
J. Spinal Cord Med.
1079-0268,
18
(
1
), pp.
9
13
.
7.
Rao
,
S. S.
,
Bontrager
,
E. L.
,
Gronley
,
J. K.
,
Newsam
,
C. J.
, and
Perry
,
J.
, 1996, “
Three-Dimensional Kinematics of Wheelchair Propulsion
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
4
(
3
), pp.
152
160
.
8.
Rodgers
,
M. M.
,
Gayle
,
G. W.
,
Figoni
,
S. F.
,
Kobayashi
,
M.
,
Lieh
,
J.
, and
Glaser
,
R. M.
, 1994, “
Biomechanics of Wheelchair Propulsion During Fatigue
,”
Arch. Phys. Med. Rehabil.
0003-9993,
75
(
1
), pp.
85
93
.
9.
Rodgers
,
M. M.
,
Tummarakota
,
S.
,
Lieh
,
J.
, and
Shrag
,
D. R.
, 1994, “Three-dimensional Dynamic Analysis of Joint Reaction Forces and Moments During Wheelchair Propulsion,” Clinical Kinesiology, 47(4), p. 98.
10.
Boninger
,
M. L.
,
Souza
,
A. L.
,
Cooper
,
R. A.
,
Fitzgerald
,
S. G.
,
Koontz
,
A. M.
, and
Fay
,
B. T.
, 2002, “
Propulsion Patterns and Pushrim Biomechanics in Manual Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
0003-9993,
83
(
5
), pp.
718
723
.
11.
Costic
,
R. S.
,
Jari
,
R.
,
Rodosky
,
M. W.
, and
Debski
,
R. E.
, 2003, “
Joint Compression Alters the Kinematics and Loading Patterns of the Intact and Capsul-Transected AC Joint
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
379
385
.
12.
Gokeler
,
A.
,
van Paridon-Edauw
,
G. H.
,
DeClercq
,
S.
,
Matthijs
,
O.
, and
Dijkstra
,
P. U.
, 2003, “Quantitative Analysis of Traction in the Glenohumeral Joint. In Vivo Radiographic Measurements,” Manual Therapy, 8(2), pp. 97–102.
13.
Remia
,
L. F.
,
Ravalin
,
R. V.
,
Lemly
,
K. S.
,
McGarry
,
M. H.
,
Kvitne
,
R. S.
, and
Lee
,
T. Q.
, 2003, “
Biomechanical Evaluation of Multidirectional Glenohumeral Instability and Repair
,”
Clin. Orthop. Relat. Res.
0009-921X,
416
, pp.
225
236
.
14.
Brubaker
,
C. E.
, 1986, “
Wheelchair Prescription: An Analysis of Factors That Affect Mobility and Performance
,”
J. Rehabil. Res. Dev.
0748-7711,
23
(
4
), pp.
19
26
.
15.
McLaurin
,
C. A.
, and
Brubaker
,
C. E.
, 1991, “
Biomechanics and the Wheelchair
,”
Prosthet. Orthot Int.
0309-3646,
15
, pp.
24
37
.
16.
Mulroy
,
S. J.
,
Gronley
,
J. K.
,
Newsam
,
C. J.
, and
Perry
,
J.
, 1996, “
Electromyographic Activity of Shoulder Muscles During Wheelchair Propulsion by Paraplegic Persons
,”
Arch. Phys. Med. Rehabil.
0003-9993,
77
(
2
), pp.
187
193
.
17.
Roux
,
L.
,
Hanneton
,
S.
, and
Roby-Brami
,
A.
, 2006, “
Shoulder Movements During the Initial Phase of Learning Manual Wheelchair Propulsion in Able-Bodied Subjects
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
S
), pp.
S45
S51
.
18.
Au
,
A. T.
, and
Kirsch
,
R. F.
, 2000, “
EMG-Based Prediction of Shoulder and Elbow Kinematics in Able-Bodied and Spinal Cord Injured Individuals
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
8
(
4
), pp.
471
80
.
19.
Cooper
,
R. A.
,
Robertson
,
R. N.
,
VanSickle
,
D. P.
,
Boninger
,
M. L.
, and
Shimada
,
S. D.
, 1996, “
Projection of the Point of Force Application onto a Palmar Plane of the Hand During Wheelchair Propulsion
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
4
(
3
), pp.
133
142
.
20.
de Groot
,
S.
,
Veeger
,
H. E.
,
Hollander
,
A. P.
, and
van der Woude
,
L. H.
, 2003, “
Short-Term Adaptations in Co-Ordination During the Initial Phase of Learning Manual Wheelchair Propulsion
,”
J. Electromyogr Kinesiol
1050-6411,
13
(
3
), pp.
217
228
.
21.
de Groot
,
S.
,
Veeger
,
H. E.
,
Hollander
,
A. P.
, and
van der Woude
,
L. H.
, 2004, “
Effect of Wheelchair Stroke Pattern on Mechanical Efficiency
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
83
(
8
), pp.
640
649
.
22.
Kulig
,
K.
,
Newsam
,
C. J.
,
Mulroy
,
S. J.
,
Rao
,
S.
,
Gronley
,
J. K.
,
Bontrager
,
E. L.
, and
Perry
,
J.
, 2001, “
The Effect of Level of Spinal Cord Injury on Shoulder Joint Kinetics During Manual Wheelchair Propulsion
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
9
), pp.
744
751
.
23.
Kulig
,
K.
,
Rao
,
S. S.
,
Mulroy
,
S. J.
,
Newsam
,
C. J.
,
Gronley
,
J. K.
,
Bontrager
,
E. L.
, and
Perry
,
J.
, 1998, “
Shoulder Joint Kinetics During the Push Phase of Wheelchair Propulsion
,”
Clin. Orthop. Relat. Res.
0009-921X,
354
, pp.
132
143
.
24.
Lin
,
H. T.
,
Su
,
F. C.
,
Wu
,
H. W.
, and
An
,
K. N.
, 2004, “
Muscle Forces Analysis in the Shoulder Mechanism During Wheelchair Propulsion
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
(
4
), pp.
213
221
.
25.
Mulroy
,
S. J.
,
Farrokhi
,
S.
,
Newsam
,
C. J.
, and
Perry
,
J.
, 2004, “
Effects of Spinal Cord Injury Level on the Activity of Shoulder Muscles During Wheelchair Propulsion: An Electromyographic Study
,”
Arch. Phys. Med. Rehabil.
0003-9993,
85
(
6
), pp.
925
934
.
26.
Robertson
,
R. N.
,
Boninger
,
M. L.
,
Cooper
,
R. A.
, and
Shimada
,
S. D.
, 1996, “
Pushrim Forces and Joint Kinetics During Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
0003-9993,
77
(
9
), pp.
856
864
.
27.
Sabick
,
M. B.
,
Kotajarvi
,
B. R.
, and
An
,
K. N.
, 2004, “
A New Method to Quantify Demand on the Upper Extremity During Manual Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
0003-9993,
85
(
7
), pp.
1151
1159
.
28.
Asato
,
K. T.
,
Cooper
,
R. A.
,
Robertson
,
R. N.
, and
Ster
,
J. F.
, 1993, “
SMART-Wheels: Development and Testing of a System for Measuring Manual Wheelchair Propulsion Dynamics
,”
IEEE Trans. Biomed. Eng.
0018-9294,
40
(
12
), pp.
1320
1324
.
29.
Anatomical Guide for the Electromyographer: The Limbs and Trunk.
30.
Boninger
,
M. L.
,
Cooper
,
R. A.
,
Robertson
,
R. N.
, and
Shimada
,
S. D.
, 1997, “
Three-Dimensional Pushrim Forces During Two Speeds of Wheelchair Propulsion
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
76
(
5
), pp.
420
426
.
31.
Beres-Jones
,
J. A.
, and
Harkema
,
S. J.
, 2004, “
The Human Spinal Cord Interprets Velocity-Dependent Afferent Input During Stepping
,”
Brain
0006-8950,
127
, pp.
2232
2246
.
32.
Medicine
,
C. F. S. C.
, 2005, “
Preservation of Upper Limb Function Following Spinal Cord Injury: A Clinical Practice Guideline for Health-Case Professionals
,” Paralyzed Veterans of America.
33.
Curtis
,
K. A.
,
Roach
,
K. E.
,
Applegate
,
E. B.
,
Amar
,
T.
,
Benbow
,
C. S.
,
Genecco
,
T. D.
, and
Gualano
,
J.
, 1995, “
Development of the Wheelchair User’s Shoulder Pain Index (WUSPI)
,”
Paraplegia
0031-1758,
33
(
5
), pp.
290
293
.
34.
Curtis
,
K. A.
,
Roach
,
K. E.
,
Applegate
,
E. B.
,
Amar
,
T.
,
Benbow
,
C. S.
,
Genecco
,
T. D.
, and
Gualano
,
J.
, 1995, “
Reliability and Validity of the Wheelchair User’s Shoulder Pain Index (WUSPI). Paraplegia
,”
Paraplegia
0031-1758,
33
(
10
), pp.
595
601
.
35.
Schantz
,
P.
,
Bjorkman
,
P.
,
Sandberg
,
M.
, and
Andersson
,
E.
, 1999, “
Movement and Muscle Activity Pattern in Wheelchair Ambulation by Persons With Para- and Tetraplegia
,”
Scand. J. Rehabil. Med.
0036-5505,
31
, pp.
67
76
.
36.
Veeger
,
H. E.
,
van der Woude
,
L. H.
, and
Rozendal
,
R. H.
, 1989, “
The Effect of Rear Wheel Camber in Manual Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
0748-7711,
26
(
2
), pp.
37
46
.
37.
van der Woude
,
L. H.
,
Veeger
,
D.
, and
Rozendal
,
R. H.
, 1989, “
Optimum Cycle Frequencies in Hand-Rim Wheelchair Propulsion. Wheelchair Propulsion Technique
,”
Eur. J. Appl. Physiol.
0301-5548,
58
(
6
), pp.
625
632
.
38.
Harburn
,
K. L.
, and
Spaulding
,
S. J.
, 1986, “
Muscle Activity in the Spinal Cord-Injured During Wheelchair Ambulation
,”
Am. J. Occup. Ther.
0272-9490,
40
(
9
), pp.
629
636
.
39.
Masse
,
L. C.
, and
Lamontagne
,
M.
, 1992, “
Biomechanical Analysis of Wheelchair Propulsion for Various Seating Positions
,”
J. Rehabil. Res. Dev.
0748-7711,
29
(
3
), pp.
12
28
.
You do not currently have access to this content.