In the first of this two-part discourse on the extraction of elastic properties from atomic force microscopy (AFM) data, a scheme for automating the analysis of force-distance curves was introduced and experimentally validated for the Hertzian (i.e., linearly elastic and noninteractive probe-sample pairs) indentation of soft, inhomogeneous materials. In the presence of probe-sample adhesive interactions, which are common especially during retraction of the rigid tip from soft materials, the Hertzian models are no longer adequate. A number of theories (e.g., Johnson–Kendall–Roberts and Derjaguin–Muller–Toporov), covering the full range of sample compliance relative to adhesive force and tip radius, are available for analysis of such data. We incorporated Pietrement and Troyon’s approximation (2000, “General Equations Describing Elastic Indentation Depth and Normal Contact Stiffness Versus Load,” J. Colloid Interface Sci., 226(1), pp. 166–171) of the Maugis–Dugdale model into the automated procedure. The scheme developed for the processing of Hertzian data was extended to allow for adhesive contact by applying the Pietrement–Troyon equation. Retraction force-displacement data from the indentation of polyvinyl alcohol gels were processed using the customized software. Many of the retraction curves exhibited strong adhesive interactions that were absent in extension. We compared the values of Young’s modulus extracted from the retraction data to the values obtained from the extension data and from macroscopic uniaxial compression tests. Application of adhesive contact models and the automated scheme to the retraction curves yielded average values of Young’s modulus close to those obtained with Hertzian models for the extension curves. The Pietrement–Troyon equation provided a good fit to the data as indicated by small values of the mean-square error. The Maugis–Dugdale theory is capable of accurately modeling adhesive contact between a rigid spherical indenter and a soft, elastic sample. Pietrement and Troyon’s empirical equation greatly simplifies the theory and renders it compatible with the general automation strategies that we developed for Hertzian analysis. Our comprehensive algorithm for automated extraction of Young’s moduli from AFM indentation data has been expanded to recognize the presence of either adhesive or Hertzian behavior and apply the appropriate contact model.

1.
Lin
,
D. C.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
, 2007, “
Robust Strategies for Automated AFM Force Curve Analysis: I. Non-Adhesive Indentation of Soft, Inhomogeneous Materials
,”
ASME J. Biomech. Eng.
0148-0731
129
(
3
), pp.
430
440
.
2.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
(
1558
), pp.
301
313
.
3.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
(
2
), pp.
314
326
.
4.
Tabor
,
D.
, 1976, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
0021-9797,
58
(
1
), pp.
2
13
.
5.
Muller
,
V. M.
,
Yushchenko
,
V. S.
, and
Derjaguin
,
B. V.
, 1980, “
On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane
,”
J. Colloid Interface Sci.
0021-9797,
77
(
1
), pp.
91
101
.
6.
Greenwood
,
J. A.
, 1997, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
(
1961
), pp.
1277
1297
.
7.
Maugis
,
D.
, 1992, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
150
(
1
), pp.
243
269
.
8.
Carpick
,
R. W.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
, 1999, “
A General Equation for Fitting Contact Area and Friction Vs Load Measurements
,”
J. Colloid Interface Sci.
0021-9797,
211
(
2
), pp.
395
400
.
9.
Pietrement
,
O.
, and
Troyon
,
M.
, 2000, “
General Equations Describing Elastic Indentation Depth and Normal Contact Stiffness Versus Load
,”
J. Colloid Interface Sci.
0021-9797,
226
(
1
), pp.
166
171
.
10.
Burnham
,
N. A.
,
Colton
,
R. J.
, and
Pollock
,
H. M.
, 1991, “
Interpretation Issues in Force Microscopy
,”
J. Vac. Sci. Technol. A
0734-2101,
9
(
4
), pp.
2548
2556
.
11.
Horn
,
R. G.
,
Israelachvili
,
J. N.
, and
Pribac
,
F.
, 1987, “
Measurement of the Deformation and Adhesion of Solids in Contact
,”
J. Colloid Interface Sci.
0021-9797,
115
(
2
), pp.
480
492
.
12.
Sarid
,
D.
,
Hunt
,
J. P.
,
Workman
,
R. K.
,
Yao
,
X.
, and
Peterson
,
C. A.
, 1998, “
The Role of Adhesion in Tapping-Mode Atomic Force Microscopy
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
66
(
1
), pp.
S283
286
.
13.
Scheffer
,
L.
,
Bitler
,
A.
,
Ben-Jacob
,
E.
, and
Korenstein
,
R.
, 2001, “
Atomic Force Pulling: Probing the Local Elasticity of the Cell Membrane
,”
Eur. Biophys. J.
0175-7571,
30
(
2
), pp.
83
90
.
14.
Eaton
,
P.
,
Smith
,
J. R.
,
Graham
,
P.
,
Smart
,
J. D.
,
Nevell
,
T. G.
, and
Tsibouklis
,
J.
, 2002, “
Adhesion Force Mapping of Polymer Surfaces: Factors Influencing Force of Adhesion
,”
Langmuir
0743-7463,
18
(
8
), pp.
3387
3389
.
15.
Sun
,
Y.
,
Akhremitchev
,
B.
, and
Walker
,
G. C.
, 2004, “
Using the Adhesive Interaction between Atomic Force Microscopy Tips and Polymer Surfaces to Measure the Elastic Modulus of Compliant Samples
,”
Langmuir
0743-7463,
20
(
14
), pp.
5837
5845
.
16.
Cao
,
Y.
,
Yang
,
D.
, and
Soboyejoy
,
W.
, 2005, “
Nanoindentation Method for Determining the Initial Contact and Adhesion Characteristics of Soft Polydimethylsiloxane
,”
J. Mater. Res.
0884-2914,
20
(
8
), pp.
2004
2011
.
17.
Asif
,
S. A. S.
,
Colton
,
R. J.
, and
Wahl
,
K. J.
, 2001, “
Nanoscale Surface Mechanical Property Measurements: Force Modulation Techniques Applied to Nanoindentation
,”
Interfacial Properties on the Submicrometer Scale
,
J.
Frommer
and
R. M.
Overney
, eds.,
ACS/Oxford University Press
,
Washington
, pp.
198
215
.
18.
Barber
,
J. R.
, 2002,
Elasticity
,
Kluwer Academic
,
Dordrecht
.
19.
Beatty
,
M. F.
, and
Usmani
,
S. A.
, 1975, “
On the Indentation of a Highly Elastic Half-Space
,”
Q. J. Mech. Appl. Math.
0033-5614,
28
(
1
), pp.
47
62
.
20.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
, 2002, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
82
(
5
), pp.
2798
2810
.
21.
Heinz
,
W. F.
, and
Hoh
,
J. H.
, 1999, “
Spatially Resolved Force Spectroscopy of Biological Surfaces Using the Atomic Force Microscope
,”
Trends Biotechnol.
0167-7799,
17
(
4
), pp.
143
150
.
22.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
, 1997, “
An Adhesion Map for the Contact of Elastic Spheres
,”
J. Colloid Interface Sci.
0021-9797,
192
(
2
), pp.
326
33
.
23.
Horkay
,
F.
, and
Nagy
,
M.
, 1980, “
Elasticity of Swollen Polyvinyl Alcohol and Poly(Vinyl Acetate) Networks
,”
Polym. Bull. (Berlin)
0170-0839,
3
(
8–9
), pp.
457
463
.
24.
Treloar
,
L. R. G.
, 1975,
The Physics of Rubber Elasticity
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.