A comprehensive computational framework to simulate heat transfer during the freezing process in prostate cancer cryosurgery is presented. Tissues are treated as nonideal materials wherein phase transition occurs over a temperature range, thermophysical properties are temperature dependent and heating due to blood flow and metabolism are included. Boundary conditions were determined at the surfaces of the commercially available cryoprobes and urethral warmer by experimental study of temperature combined with a mathematical optimization process. For simulations, a suitable computational geometry was designed based on MRI imaging data of a real prostate. An enthalpy formulation-based numerical solution was performed for a prescribed surgical protocol to mimic a clinical freezing process. This computational framework allows for the individual planning of cryosurgical procedures and objective assessment of the effectiveness of prostate cryosurgery.

1.
American Cancer Society
, 2004, “
Overview: Prostate Cancer
,” available at http://www.cancer.org/docroot/CRI/CRI̱2̱1x.asphttp://www.cancer.org/docroot/CRI/CRI̱2̱1x.asp? dt=36
2.
Zincke
,
H.
,
Bergstralh
,
E. J.
,
Blute
,
M. L.
,
Myers
,
R. P.
,
Barrett
,
D. M.
,
Lieber
,
M. M.
,
Martin
,
S. K.
, and
Oesterling
,
J. E.
, 1994, “
Radical Prostatectomy for Clinically Localized Prostate Cancer: Long-Term Results of 1,143 Patients From a Single Institution
,”
J. Clin. Oncol.
0732-183X,
12
(
11
), pp.
2254
2263
.
3.
Hamilton
,
A. S.
,
Stanford
,
J. L.
,
Gilliland
,
F. D.
,
Albertsen
,
P. C.
,
Stephenson
,
R. A.
,
Hoffman
,
R. M.
,
Eley
,
J. W.
,
Harlan
,
L. C.
, and
Potosky
,
A. L.
, 2001, “
Health Outcomes After External-beam Radiation Therapy for Clinically Localized Prostate Cancer: Results from the Prostate Cancer Outcomes Study
,”
J. Clin. Oncol.
0732-183X,
19
(
9
), pp.
2517
2526
.
4.
Smith
,
M. R.
,
McGovern
,
F. J.
,
Zietman
,
A. L.
,
Fallon
,
M. A.
,
Hayden
,
D. L.
,
Schoenfeld
,
D. A.
,
Kantoff
,
P. W.
, and
Finkelstein
,
J. S.
, 2001, “
Pamidronate to Prevent Bone Loss During Androgen-deprivation Therapy for Prostate Cancer
,”
N. Engl. J. Med.
0028-4793,
345
(
13
), pp.
948
955
.
5.
Eisenberger
,
M. A.
, 1988, “
Chemotherapy for Prostate Carcinoma
,”
J. Natl. Cancer Inst.
0027-8874,
7
, pp.
151
163
.
6.
Onik
,
G. M.
, 1995, “
Prostate Cryoablation: A Reappraisal
,”
Percutaneous Prostate Cryoablation
,
G. M.
Onik
,
B.
Rubinsky
,
G.
Watson
,
R. J.
Ablin
, eds.,
Quality Medical Publishing
, St. Louis, MO, Chap. 1.
7.
Onik
,
G.
, 1989, “
Transperineal Prostatic Cryosurgery Under Transrectal Ultrasound Guidance
,”
Semin. Interventional Radiol.
,
6
, pp.
90
96
.
8.
Bahn
,
D. K.
,
Lee
,
F.
,
Solomon
,
M. H.
,
Gontina
,
H.
,
Klionsky
,
D. L.
, and
Lee
,
F. T.
, 1995, “
Prostate Cancer: US-Guided Percutaneous Cryoablation
,”
Radiology
0033-8419,
194
(
2
), pp.
551
554
.
9.
Bahn
,
D. K.
,
Lee
,
F.
,
Badalament
,
R.
,
Kumar
,
A.
,
Greski
,
J.
, and
Chernick
,
M.
, 2002, “
Target Cryoablation of the Prostate: 7-Year Outcomes in the Primary Treatment of Prostate Cancer
,”
Urology
0090-4295,
60
(
2a
), pp.
3
11
.
10.
Ghafa
,
M. A.
,
Johnson
,
C. W.
,
Taille
,
A. D. L.
,
Benson
,
M. C.
,
Bagiella
,
E.
,
Fatal
,
M.
,
Olsson
,
C. A.
, and
Katz
,
A. E.
, 2001, “
Salvage Cryotherapy Using an Argon Based System for Locally Recurrent Prostate Cancer after Radiation Therapy: The Columbia Experience
,”
J. Urol. (Baltimore)
0022-5347,
166
, pp.
1333
1338
.
11.
Bischof
,
J. C.
,
Smith
,
D.
,
Pazhayannur
,
P. V.
,
Manivel
,
C.
,
Hulbert
,
J.
, and
Roberts
,
K. P.
, 1997, “
Cryosurgery of Dunning AT-1 Rat Prostate Tumor: Thermal Biophysical, and Viability Response at the Cellular and Tissue Level
,”
Cryobiology
0011-2240,
34
, pp.
42
69
.
12.
Smith
,
D. J.
,
Fahssi
,
W. M.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
, 1999, “
A Parametric Study of Freezing Injury in AT-1 Rat Prostate Tumor Cells
,”
Cryobiology
0011-2240,
39
, pp.
13
28
.
13.
Tatsutani
,
K.
,
Rubinsky
,
B.
,
Onik
,
G.
, and
Dahiya
,
R.
, 1996, “
Effect of Thermal Variables on Frozen Human Primary Prostatic Adenocarcinoma Cells
,”
Urology
0090-4295,
48
(
3
), pp.
441
447
.
14.
Larson
,
T. R.
,
Robertson
,
D. W.
,
Corica
,
A.
, and
Bostwick
,
D. G.
, 2000, “
In vivo Interstitial Temperature Mapping of the Human Prostate During Cryosurgery With Correlation With Histopathologic Outcomes
,”
Urology
0090-4295,
55
(
4
), pp.
547
552
.
15.
Saliken
,
J. C.
,
Donnelly
,
R. J.
, and
Rewcastle
,
J. C.
, 2002, “
The Evolution and State of Modern Technology for Prostate Cryosurgery
,”
Urology
0090-4295,
60
(
2a
), pp.
50
55
.
16.
Comini
,
G.
, and
Del Giudice
,
S.
, 1976, “
Thermal Aspects of Cryosurgery
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
543
549
.
17.
Rewcastle
,
J. C.
, and
Sandison
,
G. A.
, 2001, “
A Model for the Time Dependent Three-dimensional Thermal Distribution Within Iceballs Surrounding Multiple Cryoprobes
,”
Med. Phys.
0094-2405,
28
(
6
), pp.
1125
1137
.
18.
Cooper
,
T. E.
, and
Trezek
,
G. J.
, 1970, “
Analytical Prediction of the Temperature Field Emanating from a Cryogenic Surgical Cannula
,”
Cryobiology
0011-2240,
7
, pp.
79
93
.
19.
Cooper
,
T. E.
, and
Trezek
,
G. J.
, 1971, “
Rate of Lesion Growth Around Spherical and Cylindrical Cryoprobes
,”
Cryobiology
0011-2240,
7
, pp.
183
190
.
20.
Cooper
,
T. E.
, and
Trezek
,
G. J.
, 1972, “
On the Freezing of Tissue
,”
ASME J. Heat Transfer
0022-1481,
94
, pp.
251
253
.
21.
Rubinsky
,
B.
, and
Shitzer
,
A.
, 1976, “
Analysis of a Stefan-Like Problem in a Biological Tissue Around a Cryosurgical Probe
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
514
519
.
22.
Budman
,
H.
,
Shitzer
,
A.
, and
Dayan
,
J.
, 1995, “
Analysis of the Inverse Problem of Freezing and Thawing of a Binary Solution During Cryosurgical Processes
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
193
202
.
23.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1995, “
Exact Solution to the One-Dimensional Inverse-Stefan Problem in Nonideal Biological Tissues
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
425
431
.
24.
Weill
,
A.
,
Shitzer
,
A.
, and
Bar-Yoseph
,
P.
, 1993, “
Finite Element Analysis of the Temperature Field Around Two Adjacent Cryo-probes
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
374
379
.
25.
Alexiades
,
V.
, and
Solomon
,
A. D.
, 1993,
Mathematical Modeling of Melting and Freezing Processes
,
Hemisphere
, Washington DC, Chap. 4.
26.
Voller
,
V. R.
, and
Swaminathan
,
C. R.
, 1991, “
Generalized Source-Based Method for Solidification Phase Change
,”
Numer. Heat Transfer, Part B
1040-7790,
19
(
2
), pp.
175
189
.
27.
Hayes
,
L. J.
,
Diller
,
K. R.
,
Chang
,
H. J.
, and
Lee
,
H. S.
, 1988, “
Prediction of Local Cooling Rates and Cell Survival During the Freezing of a Cylindrical Specimen
,”
Cryobiology
0011-2240,
25
, pp.
67
82
.
28.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1998, “
Numerical Solution of the Multidimensional Freezing Problem During Cryosurgery
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
32
37
.
29.
Zhang
,
A.
,
Xu
,
L. X.
,
Sandison
,
G. A.
, and
Zhang
,
J.
, 2003, “
A Microscale Model for Prediction of Breast Cancer Cell Damage During Cryosurgery
,”
Cryobiology
0011-2240,
47
, pp.
143
154
.
30.
Devireddy
,
R. V.
,
Smith
,
D. J.
, and
Bischof
,
J. C.
, 2002, “
Effect of Microscale Mass Transport and Phase Change on Numerical Prediction of Freezing in Biological Tissues
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
365
374
.
31.
Budman
,
H.
,
Shitzer
,
A.
, and
Giudice
,
S. D.
, 1986, “
Investigation of Temperature Fields around Embedded Cryoprobes
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
42
48
.
32.
Rewcastle
,
J. C.
,
Sandison
,
G. A.
,
Hahn
,
L. J.
,
Saliken
,
J. C.
,
McKinnon
,
J. G.
, and
Donnelly
,
B. J.
, 1998, “
A Model for the Time-dependent Thermal Distribution Within an Iceball Surrounding a Cryoprobe
,”
Phys. Med. Biol.
0031-9155,
43
, pp.
3519
3534
.
33.
Jankun
,
M.
,
Kelly
,
T. J.
,
Zaim
,
A.
,
Young
,
K.
,
Keck
,
R. W.
,
Selman
,
S.
, and
Jankun
,
J.
, 1999, “
Computer Model for Cryosurgery of the Prostate
,”
Rev. Rhum Engl Ed.
1169-8446,
4
, pp.
193
199
.
34.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperature in Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
35.
Xu
,
L. X.
, 1999, “
New Developments in Bioheat and Mass Transfer Modeling
,”
Annual Review of Heat Transfer
,
Begell House
, New York,
C. L.
,
Tien
, ed.,
10
, pp.
1
23
.
36.
Liu
,
J.
,
Zhu
,
L.
, and
Xu
,
L. X.
, 2000, “
Studies on the Three-Dimensional Temperature Transients in the Canine Prostate During Transurethral Microwave Thermal Therapy
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
372
379
.
37.
Rabin
,
Y.
,
Coleman
,
R.
,
Mordohovich
,
D.
,
Ber
,
R.
, and
Shitzer
,
A.
, 1996, “
A New Cryosurgical Device for Controlled Freezing, Part II: In Vivo Experiments on Rabbits’ Hindlimbs
,”
Cryobiology
0011-2240,
33
, pp.
93
105
.
38.
Fluent Inc.
, 2002,
FLUENT 6.0 User’s Guide
,
Fluent Inc
.
39.
Zhang
,
A.
, 2002, “
DSC Measurement of Biological Tissues
,” unpublished experimental data,
Purdue University
.
40.
Walder
,
H. A. D.
, 1971, “
Experimental Cryosurgery
,”
Cryogenics in Surgery
,
H.
,
Leden
, (ed.),
Medical Examination Publishing
, New York.
41.
Rothenberg
,
H. W.
, 1970, “
Cutaneous Circulation in Rabbits and Humans Before, During, and After Cryosurgical Procedures Measured by Xenon-133 Clearance
,”
Cryobiology
0011-2240,
6
(
6
), pp.
507
511
.
42.
Bonacina
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
, 1974, “
On the Estimation of Thermophysical Properties in Nonlinear Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
861
867
.
43.
Rabin
,
Y.
, 2000, “
The Effect of Temperature-Dependent Thermal Conductivity in Heat Transfer Simulations of Frozen Biomaterials
,”
Cryo-Lett.
,
21
, pp.
163
170
.
44.
Chato
,
J. C.
, 1985, “
Selected Thermophysical Properties of Biological Materials
,”
Heat Transfer in Medicine and Biology: Analysis and Applications
,
A.
,
Shitzer
, and
R. C.
,
Eberhart
, eds.,
Plenum Press
, New York, Chap. 9.
45.
Philips Inc.
,
Manual to Philips MxView System
,
Philips Inc
.
46.
Fluent Inc.
, 2001,
User’s Guide to GAMBIT 2.0
,
Fluent Inc
.
47.
Wong
,
W. S.
, 2001,
Temperature Monitored TCAP™: Time Procedure Outline
,
Endocare Inc.
documentation.
48.
Mathur
,
S.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
31
(
2
), pp.
195
216
.
49.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
A Conservative Numerical Scheme for the Energy Equation
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
1081
1085
.
50.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 2001, “
Unstructured Finite Volume Methods for Multi-Mode Heat Transfer
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
, and
E. M.
Sparrow
, (eds.),
Taylor and Francis
2
, pp.
37
67
.
51.
Mazur
,
P.
, 1984, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Phys.
0002-9505,
143
,
C125
142
.
52.
Gage
,
A. A.
, and
Baust
,
J.
, 1998, “
Mechanisms of Tissue Injury in Cryosurgery
,”
Cryobiology
0011-2240,
37
, pp.
171
186
.
53.
Duck
,
F. A.
, 1990,
Physical Properties of Tissue: a Comprehensive Reference Book
,
Academic Press
, London.
54.
Baissalov
,
R.
,
Sandison
,
G. A.
,
Donnelly
,
B. J.
,
Saliken
,
J. C.
,
McKinnon
,
J. G.
,
Muldrew
,
K.
, and
Rewcastle
,
J. C.
, 2000, “
A Semi-Empirical Treatment Planning for Optimization of Multiprobe Cryosurgery
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1085
1098
.
55.
Baissalov
,
R.
,
Sandison
,
G. A.
,
Reynolds
,
D.
, and
Muldrew
,
K.
, 2001, “
Simultaneous Optimization of Cryoprobe Placement and Thermal Protocol for Cryosurgery
,”
Phys. Med. Biol.
0031-9155,
46
, pp.
1799
1814
.
56.
Keanini
,
R. G.
, and
Rubinsky
,
B.
, 1992, “
Optimization of Multiprobe Cryosurgery
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
796
801
.
57.
Sandison
,
G. A.
, 2002, “
Future Directions for Cryosurgery Computer Treatment Planning
,”
Urology
0090-4295,
60
(
2a
), pp.
50
55
.
58.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
Wiley
, New York, pp.
491
502
.
59.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
, 1994, “
LBFGS-B: FORTRAN Subroutines for Large-Scale Bound Constrained Optimization
,” Report NAM-11, EECS Department,
Northwestern University
.
60.
Zhang
,
J.
, 2003, “
Numerical Simulation of Prostate Cancer Cryosurgery
,” M.S. thesis, Purdue University, West Lafayette, IN.
61.
Xu
,
L. X.
,
Zhu
,
L.
, and
Holmes
,
K. R.
, 1998, “
Thermoregulation in the Canine Prostate During Transurethral Microwave Hyperthermia. Part II: Blood Flow Response
,”
Int. J. Hyperthermia
0265-6736,
14
(
1
), pp.
65
73
.
62.
Mitchell
,
J. W.
,
Galvez
,
T. L.
,
Hangle
,
J.
,
Myers
,
G. E.
, and
Siebecker
,
K. L.
, 1970, “
Thermal Response of Human Legs During Cooling
,”
J. Appl. Physiol.
0021-8987,
29
, pp.
859
865
.
You do not currently have access to this content.