Background: Osteoporosis in long bones involves loss of cortical thickness and of the trabecular microarchitecture. Deterioration and weakening of trabecular bone tissue during osteoporosis imposes greater physiological loads on the cortical shell. However, it is unclear whether trabecular bone significantly contributes to the strength of whole bones under non-physiological impact loads. Method of Approach: We hypothesize that trabecular tissue in epiphyses of long bones contributes to resisting and distributing impact loads. To test this hypothesis, we caused artificial trabecular bone loss in proximal femora of adult hens but did not alter the bone cortex. Subsequently, we compared the energy required to fracture the proximal part of femora with missing trabecular tissue with the energy required to fracture control femora, by means of a Charpy test. Results: Extensive loss of trabecular bone in hens (over 0.50 grams or 71% weight fraction) significantly reduced the energy required to fracture the whole proximal femur in mediolateral impacts (from 0.37 joule in controls to 0.20 joule after extraction of core trabecular tissue). Conclusions: These findings indicate that trabecular bone in the proximal femur is important for distributing impact loads applied to the cortex, and support the concept that in treating osteoporosis to prevent hip fractures, it is just as important to prevent trabecular bone loss as it is important to prevent loss of cortical thickness.

1.
Ray
,
N. F.
,
Chan
,
J. K.
,
Thamer
,
M.
, and
Melton
,
L. J.
,
1997
, “
Medical Expenditures for Treatment of Osteoporotic Fractures in the United States in 1995: Report from the National Osteoporosis Foundation
,”
J. Bone Miner. Res.
,
12
, pp.
24
35
.
2.
National Osteoporosis Foundation, Disease Statistics, www.nof.org
3.
Seeman
,
E.
,
2003
, “
Pathogenesis of Osteoporosis
,”
J. Appl. Physiol.
,
95
, pp.
2142
2151
.
4.
Riggs
,
B. L.
,
Wahner
,
H. W.
,
Seeman
,
E.
,
Offord
,
K. P.
,
Dunn
,
W. L.
,
Mazess
,
R. B.
,
Johnson
,
K. A.
; and
Melton
, III,
L. J.
,
1982
, “
Changes in Bone Mineral Density of the Proximal Femur and Spine with Aging. Differences Between the Postmenopausal and Senile Osteoporosis Syndromes
,”
J. Clin. Invest.
,
70
, pp.
716
723
.
5.
Weiss
,
A.
,
Arbell
,
I.
,
Steinhagen-Thiessen
,
E.
, and
Silbermann
,
M.
,
1991
, “
Structural Changes in Aging Bone: Osteopenia in the Proximal Femurs of Female Mice
,”
Bone (N.Y.)
,
12
, pp.
165
172
.
6.
Sharma
,
D. N.
,
1944
, “
Note on the Comparison of Rat and Chicken Bone
,”
Indian J. Med. Res.
,
51
, pp.
686
687
.
7.
Biewener
,
A. A.
,
1982
, “
Bone Strength in Small Mammals and Bipedal Birds: Do Safety Factors Change with Body Size?
,”
J. Exp. Biol.
,
98
, pp.
289
301
.
8.
McAlister
,
G. B.
, and
Moyle
,
D. D.
,
1983
, “
Some Mechanical Properties of Goose Femoral Cortical Bone
,”
J. Biomech.
,
16
, pp.
577
589
.
9.
Carrier
,
D.
, and
Leon
,
L. R.
,
1990
, “
Skeletal Growth and Function in the California Gull (Larus californicus)
,”
J. Zool.
,
222
, pp.
375
389
.
10.
Currey
,
J. D.
,
1987
, “
The Evolution of the Mechanical Properties of Amniote Bone
,”
J. Biomech.
,
20
, pp.
1035
1044
.
11.
Erickson
,
G. M.
,
Catanese
, III,
J.
, and
Keaveny
,
T. M.
,
2002
, “
Evolution of the Biomechanical Material Properties of the Femur
,”
Anat. Rec.
,
268
, pp.
115
124
.
12.
Taylor
,
D.
,
2000
, “
Scaling Effects in the Fatigue Strength of Bones from Different Animals
,”
Jpn. J. Appl. Phys., Part 1
,
206
, pp.
299
306
.
13.
Rath
,
N. C.
,
Balog
,
J. M.
,
Huff
,
W. E.
,
Huff
,
G. R.
,
Kulkarni
,
G. B.
, and
Tierce
,
J. F.
,
1999
, “
Comparative Differences in the Composition and Biomechanical Properties of Tibiae of seven-and seventy-two-week-old male and female broiler breeder chickens
,”
Poult Sci.
,
78
, pp.
1232
1239
.
14.
Wirtz
,
D. C.
,
Schiffers
,
N.
,
Pandorf
,
T.
,
Radermacher
,
K.
,
Weichert
,
D.
, and
Forst
,
R.
,
2000
, “
Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-simulation of the Proximal Femur
,”
J. Biomech.
,
33
, pp.
1325
1330
.
15.
Wilson
,
S.
, and
Thorp
,
B. H.
,
1998
, “
Estrogen and Cancellous Bone Loss in the Fowl
,”
Calcif. Tissue Int.
,
62
, pp.
506
511
.
16.
Leblanc
,
B.
,
Wyers
,
M.
,
Cohn-Bendit
,
F.
,
Legall
,
J. M.
,
Thibault
,
E.
, and
Florent
,
J. M.
,
1986
, “
Histology and Histomorphometry of the Tibia Growth in Two Turkey Strains
,”
Poult Sci.
,
65
, pp.
1787
1795
.
17.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
, pp.
897
904
.
18.
Wilson
,
S.
,
Solomon
,
S. E.
, and
Thorp
,
B. H.
,
1998
, “
Bisphosphonates: A Potential Role in the Prevention of Osteoporosis in Laying Hens
,”
Res. Vet. Sci.
,
64
, pp.
37
40
.
19.
Wachter
,
N. J.
,
Augat
,
P.
,
Mentzel
,
M.
,
Sarkar
,
M. R.
,
Krischak
,
G. D.
,
Kinzl
,
L.
, and
Claes
,
L. E.
,
2001
, “
Predictive Value of Bone Mineral Density and Morphology Determined by Peripheral Quantitative Computed Tomography for Cancellous Bone Strength of the Proximal Femur
,”
Bone (N.Y.)
,
28
, pp.
133
139
.
20.
United States Department of Agriculture (USDA), Food Safety and Inspection Service, 2003, “Classes of poultry,” Federal Register 68, pp. 55902–55905 (Docket No. 99-017P).
21.
Goh
,
J. C.
,
Ang
,
E. J
, and
Bose
,
K.
,
1989
, “
Effect of Preservation Medium on the Mechanical Properties of Cat Bones
,”
Acta Orthop. Scand.
,
60
, pp.
465
467
.
22.
Linde
,
F.
, and
Sorensen
,
H. C.
,
1993
, “
The Effect of Different Storage Methods on the Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
26
, pp.
1249
1252
.
23.
Recker
,
R. R.
,
1989
, “
Low Bone Mass May not be the Only cause of Skeletal Fragility in Osteoporosis
,”
Proc. Soc. Exp. Biol. Med.
,
191
, pp.
272
274
.
24.
Singh
,
M.
,
Nagrath
,
A. R.
, and
Maini
,
P. S.
,
1970
, “
Changes in Trabecular Pattern of the Upper end of the Femur as an Index of Osteoporosis
,”
J. Bone Jt. Surg., Am. Vol.
,
52
, pp.
457
467
.
25.
Frankel, V. H., and Nordin, M., 2001 “Biomechanics of Bone” in Basic Biomechanics of the Musculoskeletal System, 3rd ed., edited by V. H., Frankel, and M., Nordin, Lippincott Williams & Wilkins, Philadelphia, pp. 26–59.
26.
Keyak
,
J. H.
,
Rossi
,
S. A.
,
Jones
,
K. A.
,
Les
,
C. M.
, and
Skinner
,
H. B.
,
2001
, “
Prediction of Fracture Location in the Proximal Femur using Finite Element Models
,”
Med. Eng. Phys.
,
23
, pp.
657
664
.
27.
Rath
,
N. C.
,
Huff
,
G. R.
,
Huff
,
W. E.
, and
Balog
,
J. M.
,
2000
, “
Factors Regulating Bone Maturity and Strength in Poultry
,”
Poult Sci.
,
79
, pp.
1024
1032
.
28.
Whitehead
,
C. C.
, and
Fleming
,
R. H.
,
2000
, “
Osteoporosis in Cage Layers
,”
Poult Sci.
,
79
, pp.
1033
1041
.
29.
Kocamis
,
H.
,
Yeni
,
Y. N.
,
Kirkpatrick-Keller
,
D. C.
, and
Killefer
,
J.
,
1999
, “
Postnatal Growth of Broilers in Response to in ovo Administration of Chicken Growth Hormone
,”
Poult Sci.
,
78
, pp.
1219
1226
.
30.
Delaere
,
O.
,
Dhem
,
A.
, and
Bourgois
,
R.
,
1989
, “
Cancellous Bone and Mechanical Strength of the Femoral Neck
,”
Arch. Orthop. Trauma Surg.
,
108
, pp.
72
75
.
31.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
,
28
, pp.
559
565
.
You do not currently have access to this content.