Both creep and crack growth contribute to the reduction in modulus associated with fatigue loading in bone. Here we simulate crack growth and subsequent strut failure in fatigue in an open-cell, three-dimensional Voronoi structure which is similar to that of low density, osteoporotic bone. The model indicates that sequential failure of struts leads to a precipitous drop in modulus: the failure of 1% of the struts leads to about a 10% decrease in modulus. A parametric study is performed to assess the influence of normalized stress range, relative density, initial crack size, crack shape and cell geometry on the fatigue life. The fatigue life is most sensitive to the relative density and the initial crack length. The results lead to a quantitative expression for the fatigue life associated with crack growth. Data for the fatigue life of trabecular bone are compared with the crack growth model described in this paper, as well as with a previous model for creep of a three-dimensional Voronoi structure. In our models, creep dominates the fatigue behavior in low cycle fatigue while crack growth dominates in high cycle fatigue, consistent with previous observations on cortical bone. The large scatter in the trabecular bone fatigue data make it impossible to identify a transition between creep dominated fatigue and crack growth dominated fatigue. The parametric study of the crack growth model indicates that variations in relative density among specimens, initial crack size within trabeculae and crack shape could easily produce such variability in the test results.

1.
Riggs
,
B. L.
, and
Melton
,
L. J.
,
1995
, “
The Worldwide Problem of Osteoporosis: Insights Afforded by Epidemiology
,”
Bone (N.Y.)
,
17
, pp.
505S–511S
505S–511S
.
2.
Silva
,
M. J.
,
Wang
,
C.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1994
, “
Direct and Computed-Tomography Thickness Measurements of the Human Lumbar Vertebral Shell and End-Plate
,”
Bone (N.Y.)
,
15
, pp.
409
414
.
3.
McBroom
,
R. J.
,
Hayes
,
W. C.
,
Edwards
,
W. T.
,
Goldberg
,
R. P.
,
White
,
A. A.
,
1985
, “
Prediction of Vertebral Body Compressive Fracture Using Quantitative Computed Tomography
,”
J. Bone Jt. Surg.
,
67A
, pp.
1206
1214
.
4.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1997
, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
,
22
, pp.
140
150
.
5.
Freeman
,
M. A.
,
Todd
,
R. C.
, and
Pirie
,
C. J.
,
1974
, “
The Role of Fatigue in the Pathogenesis of Senile Femoral Neck Fractures
,”
J. Bone Jt. Surg.
,
56B
, pp.
698
702
.
6.
Burrows
,
H. J.
,
1956
, “
Fatigue Infraction of the Middle of Tibia in Ballet Dancers
,”
J. Bone Jt. Surg.
,
38B
, pp.
83
94
.
7.
Giladi
,
M.
,
Milgrom
,
C.
,
Kashtan
,
H.
,
Stein
,
M.
,
Chisin
,
R.
, and
Dizian
,
R.
,
1986
, “
Recurrent Stress Fracture in Military Recruits. One Year Follow Up of 66 Recruits
,”
J. Bone Jt. Surg.
,
68B
, pp.
439
441
.
8.
Matheson
,
G. O.
,
Clement
,
D. B.
,
McKenzie
,
D. C.
,
Taunton
,
J. E.
,
Lloyd-Smith
,
D. R.
, and
MacIntyre
,
J. G.
,
1987
, “
Stress Fracture in Athletes: A Study of 320 Cases
,”
American Journal of Sports Medicine
,
15
, pp.
46
58
.
9.
Guo
,
XDE
,
McMahon
,
T. A.
,
Keaveny
,
T. M.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
,
1994
, “
Finite Element Modeling of Damage Accumulation in Trabecular Bone under Cyclic Loading
,”
J. Biomech.
,
27
, pp.
145
155
.
10.
Bowman
,
S. M.
,
Guo
,
X. E.
,
Cheng
,
D. W.
,
Keaveny
,
T. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1998
, “
Creep Contributes to the Fatigue Behavior of Bovine Trabecular Bone
,”
J. Biomech. Eng.
,
120
, pp.
647
654
.
11.
Arthur Moore, T. L., 2001, “Microdamage Accumulation in Bovine Trabecular Bone,” PhD Thesis, Health Sciences and Technology, MIT.
12.
Arthur Moore T. L., and Gibson L. J., 2001, “Microdamage Accumulation During Compressive Fatigue of Bovine Trabecular Bone,” ASME Bioengineering Conference, Snowbird, Utah, June 2001, pp. 291–292.
13.
Chang
,
W. C. W.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
,
1999
, “
Uniaxial Yield Strains for Bovine Trabecular Bone are Isotropic and Asymmetric
,”
J. Orthop. Res.
,
17
, pp.
582
585
.
14.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
, pp.
569
577
.
15.
Caler
,
W. E.
, and
Carter
,
D. R.
,
1989
, “
Bone Creep-Fatigue Damage Accumulation
,”
J. Biomech.
,
22
, pp.
625
635
.
16.
Schaffner
,
G.
,
Guo
,
X. E.
,
Silva
,
M. J.
, and
Gibson
,
L. J.
,
2000
, “
Modelling Fatigue Damage Accumulation in Two-Dimensional Voronoi Honeycombs
,”
Int. J. Mech. Sci.
,
42
, pp.
645
656
.
17.
Wright
,
T. M.
, and
Hayes
,
W. C.
,
1976
, “
The Fracture Mechanics of Fatigue Crack Propagation in Compact Bone
,”
J. Biomed. Mater. Res.
,
7
, pp.
637
648
.
18.
Fondrk
,
M.
,
Bahniuk
,
E.
,
Davy
,
D. T.
, and
Michaels
,
C.
,
1988
, “
Some Viscoplastic Characteristics of Bovine and Human Cortical Bone
,”
J. Biomech.
,
21
, pp.
623
630
.
19.
Huang, J.-S., and Gibson, L. J., 2001, “Creep of Open-Cell Voronoi Foams,” Mater. Sci. Eng. A, in press.
20.
Voronoi
,
G. F.
,
1908
, “
Novelles applications des parameters continus a la theorie des formes quadratique. Deuxieme Memoire: recherches sur les parallelloedres primitifs
,”
J. Reine Angew. Math.
,
134
, pp.
198
287
.
21.
Silva
,
M. J.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
,
1995
, “
The Effects of Non-Periodic Microstructure on the Elastic Properties of Two-Dimensional Cellular Solids
,”
Int. J. Mech. Sci.
,
37
, pp.
1161
1177
.
22.
Sullivan, J. M., 1988, “VCS,” software available from University of Minnesota Geometry Center, University of Minnesota, Minneapolis, MN.
23.
Sullivan, J. M., 1988, “Torus munge,” software available from University of Minnesota Geometry Center, University of Minnesota, Minneapolis, MN.
24.
Sullivan, J. M., 1997, “Cells,” software available from University of Minnesota Geometry Center, University of Minnesota, Minneapolis, MN.
25.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
, pp.
141
165
.
26.
Kraynik, A. M., Neisen, M. K., Reinelt, D. A., and Warren, W. E., 1999, “Foam Micromechanics,” in Foams and Emulsions, Sadoc, J. F., and Rivier, N., eds., NATO ASI Series, Kluwer Academic, pp. 259–286.
27.
Vajjhala
,
S.
,
Kraynik
,
A. M.
, and
Gibson
,
L. J.
,
2000
, “
A Cellular Solid Model for Modulus Reduction Due to Resorption of Trabeculae in Bone
,”
J. Biomech. Eng.
,
122
, pp.
511
515
.
28.
Morita
,
M.
,
Ebihara
,
A.
,
Itoman
,
M.
, and
Sasada
,
T.
,
1994
, “
Progression of Osteoporosis in Cancellous Bone Depending on Trabecular Structure
,”
Ann. Biomed. Eng.
,
22
, pp.
532
539
.
29.
Muller
,
R.
,
Van Campenhout
,
H.
,
Van Damme
,
B.
,
Van Der Perre
,
G.
,
Dequeker
,
J.
,
Hildebrand
,
T.
, and
Ruegsegger
,
P.
,
1998
, “
Morphometric Analysis of Human Bone Biopsies: A Quantitative Structural Comparison of Histological Sections and Micro-Computed Tomography
,”
Bone (N.Y.)
,
23
, pp.
59
66
.
30.
Rho
,
J. Y.
,
Roy
,
M. E.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1999
, “
Elastic Properties of Microstructural Components of Human Bone Tissue Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
,
45
, pp.
48
54
.
31.
Fazzalari
,
N. L.
,
Forwood
,
M. R.
,
Smith
,
K.
,
Manthey
,
B. A.
, and
Herreen
,
P.
,
1998
, “
Assessment of Cancellous Bone Quality in Severe Osteoarthrosis: Bone Mineral Density, Mechanics and Microdamage
,”
Bone (N.Y.)
,
22
, pp.
381
388
.
32.
Arthur Moore
,
T. L.
, and
Gibson
,
L. J.
,
2002
, “
Microdamage Accumulation in Bovine Trabecular Bone in Uniaxial Compression
,”
J. Biomech. Eng.
,
124
, pp.
63
71
.
33.
Yeni
,
Y. N.
,
Brown
,
C. U.
, and
Norman
,
T. L.
,
1998
, “
Influence of Bone Composition and Apparent Density on Fracture Toughness of the Human Femur and Tibia
,”
Bone (N.Y.)
,
22
, pp.
79
84
.
34.
Norman
,
T. L.
,
Yeni
,
Y. N.
,
Brown
,
C. U.
, and
Wang
,
Z.
,
1998
, “
Influence of Microdamage on Fracture Toughness of the Human Femur and Tibia
,”
Bone (N.Y.)
,
23
, pp.
303
306
.
35.
Levan
,
A.
, and
Royer
,
J.
,
1993
, “
Part-Circular Surface Cracks in Round Bars under Tension, Bending and Twisting
,”
Int. J. Fract.
,
61
, pp.
71
99
.
36.
Taylor
,
D.
,
1998
, “
Microcrack Growth Parameters for Compact Bone Deduced from Stiffness Variations
,”
J. Biomech.
,
31
, pp.
587
592
.
37.
Taylor, D., and Prendergast, P., 1997, “A Model for Fatigue Crack Propagation and Remodeling in Compact Bone,” Proceedings of the Institution of Mechanical Engineers, Part H 211, pp. 369–375.
38.
Akkus
,
O.
, and
Rimnac
,
C. M.
,
2001
, “
Cortical Bone Tissue Resists Fatigue Fracture by Deceleration of Microcrack Growth
,”
J. Biomech.
,
34
, pp.
757
764
.
39.
O’Brien
,
F. J.
,
Taylor
,
D.
,
Dickson
,
G. R.
, and
Lee
,
T. C.
,
2000
, “
Visualization of Three-Dimensional Microcracks in Compact Bone
,”
J. Anat.
,
197
, pp.
413
420
.
You do not currently have access to this content.