Abstract

We consider the mechanical properties of the outer hair cell cytoskeleton. The cytoskeleton is represented as a set of microdomains of different sizes and orientations composed of actin filaments and spectrin crosslinks. An intermediate material between domains is also introduced. The domain characteristics are randomly generated and the histograms of the cytoskeleton stiffness moduli are obtained. We solve an inverse problem and estimate the stiffness of the crosslink and connective molecule in the intermediate material. We discovered a pattern of highly inhomogeneous deformation of the cytoskeleton where the circumferential strain is primarily determined by the deformation of the intermediate material.

References

1.
Geisler, C. D., 1998, From Sound to Synapse, Oxford University Press, New York.
2.
Dallos, P., 1996, “Overview: Cochlear Neurobiology,” Dallos, P., Popper, A. N., and Fay R. R., eds., The Cochlea, Springer-Verlag, New York, pp. 1–43.
3.
Santos-Sacchi
,
J.
,
1993
, “
Harmonics of Outer Hair Cell Motility
,”
J. Neurosci.
,
12
, pp.
1906
1916
.
4.
Brownell
,
W. E.
,
Bader
,
C. R.
,
Bertrand
,
D.
, and
de Ribaupierre
,
Y.
,
1985
, “
Evoked Mechanical Responses of Isolated Cochlear Outer Hair Cell
,”
Science
,
27
, pp.
194
196
.
5.
Frank
,
G.
,
Hemmert
,
W.
, and
Gummer
,
A. W.
,
1999
, “
Limiting Dynamics of High-Frequency Electromechanical Transduction of Outer Hair Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
96
, pp.
4420
4425
.
6.
Hallworth
,
R.
,
1995
, “
Passive Compliance and Active Force Generation in the Guinea Pig Outer Hair Cell
,”
J. Neurosci.
,
74
, pp.
2319
2328
.
7.
Evans
,
B. N.
, and
Dallos
,
P.
,
1993
, “
Stereocilia Displacement Induced Somatic Motility of Outer Hair Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
90
,
8347
8351
.
8.
Xue, S., Mountain, D. C., and Hubbard, A. E., 1993, “Direct Measurements of Electrically-Evoked Basilar Membrane Motion,” Duinfuis, H., Horst, J. W., van Dijk, P., and van Netten, S. M. eds., Biophysics of Hair Cell Sensory Systems, World Scientific, Singapore, pp. 361–368.
9.
Mammano
,
F.
, and
Ashmore
,
J. F.
,
1993
, “
Reverse Transduction Measured in the Isolated Cochlea by Laser Michelson Interferometry
,”
Nature (London)
,
365
, pp.
838
841
.
10.
Spector
,
A. A.
,
Ameen
,
M.
, and
Popel
,
A. S.
,
2001
, “
Simulation of Motor-Driven Cochlear Outer Hair Cell Electromotility
,”
Biophys. J.
,
81
, pp.
11
24
.
11.
Holley
,
M. C.
, and
Ashmore
,
J. F.
,
1988
, “
A Cytoskeletal Spring in Cochlear Outer Hair Cells
,”
Nature (London)
,
335
, pp.
635
637
.
12.
Forge
,
A.
,
1991
, “
Structural Features of the Lateral Wall in Mammalian Cochlea Outer Hair Cells
,”
Cell Tissue Res.
,
265
, pp.
473
484
.
13.
Holley
,
M. C.
,
Kalinec
,
F.
, and
Kachar
,
B.
,
1992
, “
Structure of the Cortical Cytoskeleton in Mammalian Outer Hair Cells
,”
J. Cell. Sci.
,
102
, pp.
569
580
.
14.
Tolomeo
,
J. A.
,
Steele
,
C. R.
, and
Holley
,
M. C.
,
1996
, “
Mechanical Properties of the Lateral Cortex of Mammalian Auditory Outer Hair Cells
,”
Biophys. J.
,
71
, pp.
421
429
.
15.
Tolomeo
,
J. A.
, and
Steele
,
C. R.
,
1995
, “
Orthotropic Properties of the Composite Outer Hair Cell Wall
,”
J. Acoust. Soc. Am.
,
97
, pp.
3006
3011
.
16.
Spector
,
A. A.
,
Brownell
,
W. E.
, and
Popel
,
A. S.
,
1998
, “
Analysis of the Micropipet Experiment with the Anisotropic Outer Hair Cell Wall
,”
J. Acoust. Soc. Am.
,
103
, pp.
1001
1006
.
17.
Spector
,
A. A.
,
Brownell
,
W. E.
, and
Popel
,
A. S.
,
1998
, “
Estimation of Elastic Moduli and Bending Stiffness of Anisotropic Outer Hair Cell Wall
,”
J. Acoust. Soc. Am.
,
103, pp
1007
1011
.
18.
Adachi
,
M.
, and
Iwasa
,
K. H.
,
1997
, “
Effect of Diamide on Force Generation and Axial Stiffness of the Cochlear Outer Hair Cell
,”
Biophys. J.
,
73
, pp.
2809
2818
.
19.
Boal
,
D. H.
,
1994
, “
Computer Simulation of a Model Network for the Erythrocyte Cytoskeleton
,”
Biophys. J.
,
67
, pp.
521
529
.
20.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
,
1996
, “
An Elastic Network Model Based on the Structure of the Red Blood Cell Membrane Skeleton
,”
Biophys. J.
,
70
, pp.
146
166
.
21.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
,
1997
, “
Influence of Network Topology on the Elasticity of the Red Blood Cell Membrane Skeleton
,”
Biophys. J.
,
72
, pp.
2369
2381
.
22.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
,
1997
, “
Spectrin Properties and the Elasticity of the Red Blood Cell Membrane Skeleton
,”
Biorheology
,
34
, pp.
327
348
.
23.
Boey
,
S. K.
,
Beal
,
D. H.
, and
Discher
,
D. E.
,
1998
, “
Simulation of the Erythrocyte Cytoskeleton at Large Deformation. I. Microscopic Models
,”
Biophys. J.
,
75
, pp.
1573
1583
.
24.
Satcher
,
R. L.
, and
Dewey
,
C. F.
,
1996
, “
Theoretical Estimates of Mechanical Properties of the Endothelial cell Cytoskeleton
,”
Biophys. J.
,
71
, pp.
109
118
.
25.
Suciu
,
A.
,
Civelekoglu
,
G.
,
Tardy
,
Y.
, and
Meister
,
J.-J.
,
1997
, “
Model for the Alignment of Actin Filaments in Endothelial Cells Subjected to Fluid Shear Stress
,”
Bull. Math. Biol.
,
59
, pp.
1029
1046
.
26.
Civelekoglu
,
G.
, and
Edelstein-Keshet
,
L.
,
1994
, “
Modelling the Dynamics of F-actin in the Cell
,”
Bull. Math. Biol.
,
56
, pp.
587
616
.
27.
Kojima
,
H.
,
Ishijima
,
A.
, and
Yanagida
,
T.
,
1994
, “
Direct Measurements of Stiffness of Single Actin Filaments with and without Thropomyosin by in Vitro Nanomanipulation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
91, pp
12962
12966
.
28.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
,
1994
, “
Flexural Rigidity of Microtubules and Actin Filaments Measured from Thermal Fluctuations in Shape
,”
J. Cell Biol.
,
120
, pp.
923
934
.
29.
Love, A. E. H., 1952, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, Fourth Edition.
30.
Spector
,
A. A.
,
Brownell
,
W. E.
, and
Popel
,
A. S.
,
1998
, “
Elastic Properties of the Composite Outer Hair Cell Wall
,”
Ann. Biomed. Eng.
,
26
, pp.
157
165
.
31.
Brownell
,
W. E.
,
Spector
,
A. A.
,
Raphael
,
R. M.
, and
Popel
,
A. S.
,
2001
, “
Micro- and Nanomechanics of the Cochlear Outer hair Cell
,”
Ann. Biomed. Eng.
,
3
, pp.
169
194
.
32.
Dallos
,
P.
,
Hallworth
,
R.
, and
Evans
,
B. N.
,
1993
, “
Theory of Electrically Driven Shape Changes of Cochlear Outer Hair Cells
,”
J. Neurophysiol.
,
70
, pp.
299
323
.
33.
Dallos
,
P.
, and
He
,
D. Z. Z.
,
2000
, “
Two Models of Outer Hair Cell Stiffness and Motility
,”
JARO
,
1
, pp.
283
291
.
You do not currently have access to this content.