Compression on the lumbar spine is 1000 N for standing and walking and is higher during lifting. Ex vivo experiments show it buckles under a vertical load of 80–100 N. Conversely, the whole lumbar spine can support physiologic compressive loads without large displacements when the load is applied along a follower path that approximates the tangent to the curve of the lumbar spine. This study utilized a two-dimensional beam–column model of the lumbar spine in the frontal plane under gravitational and active muscle loads to address the following question: Can trunk muscle activation cause the path of the internal force resultant to approximate the tangent to the spinal curve and allow the lumbar spine to support compressive loads of physiologic magnitudes? The study identified muscle activation patterns that maintained the lumbar spine model under compressive follower load, resulting in the minimization of internal shear forces and bending moments simultaneously at all lumbar levels. The internal force resultant was compressive, and the lumbar spine model, loaded in compression along the follower load path, supported compressive loads of physiologic magnitudes with minimal change in curvature in the frontal plane. Trunk muscles may coactivate to generate a follower load path and allow the ligamentous lumbar spine to support physiologic compressive loads.

1.
Nachemson, A., 1987, “Lumbar Intradiscal Pressure,” in: The Lumbar Spine and Back Pain, M. I. V. Jayson, ed., Chap. 9, pp. 191–203.
2.
Schultz, A., 1987, “Loads on the Lumbar Spine,” in: The Lumbar Spine and Back Pain, M. I. V. Jayson, ed., Chap. 10, pp. 205–214.
3.
McGill, S., 1990, “Loads on the Lumbar Spine,” in: Biomechanics of the Spine: Clinical and Surgical Perspective, Chap. 5, CRC Press.
4.
Crisco
,
J. J.
,
Panjabi
,
M. M.
,
Yamamoto
,
I.
, and
Oxland
,
T. R.
,
1992
, “
Euler Stability of the Human Ligamentous Lumbar Spine. Part II: Experiment
,”
Clin. Biomech.
,
7
, pp.
27
32
.
5.
Crisco
,
J. J.
, and
Panjabi
,
M. M.
,
1992
, “
Euler Stability of the Human Ligamentous Lumbar Spine. Part I: Theory
,”
Clin. Biomech.
,
7
, pp.
19
26
.
6.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
, pp.
1003
1009
.
7.
Timoshenko, S., and Gere, J., 1961, Theory of Elastic Stability, McGraw-Hill, New York.
8.
Patwardhan
,
A. G.
,
Bunch
,
W. H.
,
Meade
,
K. P.
,
Vanderby
,
R.
, and
Knight
,
G. W.
,
1986
, “
A Biomechanical Analog of Curve Progression and Orthotic Stabilization in Idiopathic Scoliosis
,”
J. Biomech.
,
19
, pp.
103
117
.
9.
Vanderby
,
R.
,
Daniele
,
M.
,
Patwardhan
,
A.
, and
Bunch
,
W.
,
1986
, “
A Method for the Identification of In-Vivo Segmental Stiffness Properties of the Spine
,”
ASME J. Biomech. Eng.
,
108
, pp.
312
316
.
10.
Ashton-Miller, J. A., and Schultz, A. B., 1997, “Biomechanics of the Human Spine,” in: Basic Orthopaedic Biomechanics, Mow, V. C., Hayes, W. C., eds., Chap. 8, pp. 353–393.
11.
Stokes
,
I. A. F.
, and
Gardner-Morse
,
M.
,
1999
, “
Technical Note: Quantitative Anatomy of the Lumbar Musculature
,”
J. Biomech.
,
32
, pp.
311
316
.
12.
Crisco
,
J. J.
, and
Panjabi
,
M. M.
,
1991
, “
The Intersegmental and Multisegmental Muscles of the Lumbar Spine: A Biomechanical Model Comparing Lateral Stabilizing Potential
,”
Spine
,
16
, pp.
793
799
.
13.
Lee, B., 1998, “Stability of the Lumbar Spine Subjected to a Follower Load,” M. S. Thesis, The University of Illinois at Chicago, Chicago, IL.
14.
Shirazi-Adl
,
A.
, and
Parnianpour
,
M.
,
1993
, “
Nonlinear Response Analysis of the Human Ligamentous Lumbar Spine in Compression
,”
Spine
,
18
, pp.
147
158
.
15.
Shirazi-Adl
,
A.
, and
Parnianpour
,
M.
,
1996
, “
Stabilizing Role of Moments and Pelvic Rotation on the Human Spine in Compression
,”
ASME J. Biomech. Eng.
,
118
, pp.
26
31
.
16.
Stokes
,
I. A. F.
, and
Gardner-Morse
,
M.
,
1995
, “
Lumbar Spine Maximum Efforts and Muscle Recruitment Patterns Predicted by a Model With Multijoint Muscles and Joints with Stiffness
,”
J. Biomech.
,
28
, pp.
173
186
.
17.
Patwardhan, A. G., Havey, R., Meade, K. P., Lim, T. H., Carandang, G., Voronov, L., Diener, H., Ghanayem, A., and Zindrick, M., 2000, “A Follower Load Stabilizes the Lumbar Spine With Minimal Changes in the Sagittal Plane Mobility,” Proc. 46th Annual Meeting Orthopaedic Research Society, Orlando, FL.
18.
Adams
,
M. A.
,
McNally
,
D. S.
,
Chinn
,
H.
, and
Dolan
,
P.
,
1994
, “
Posture and the Compressive Strength of the Lumbar Spine
,”
Clin. Biomech.
,
9
, No.
1
, pp.
5
14
.
19.
Hutton
,
W. C.
, and
Adams
,
M. A.
,
1982
, “
Can the Lumbar Spine Be Crushed in Heavy Lifting?
Spine
,
7
, pp.
309
313
.
20.
Porter
,
R. W.
,
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1989
, “
Physical Activity and the Strength of the Lumbar Spine
,”
Spine
,
14
, pp.
201
203
.
You do not currently have access to this content.