Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.

1.
Alon
R.
,
Hammer
D. A.
, and
Springer
T. A.
,
1995
, “
Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow
,”
Nature
, Vol.
374
, pp.
539
542
.
2.
Atherton
A.
, and
Born
G. V. R.
,
1973
, “
Relationship between the velocity of rolling granulocytes and that of the blood flow in venules
,”
J. Physiol.
, Vol.
233
, pp.
157
165
.
3.
Brooks
S. B.
, and
Tozeren
A.
,
1996
, “
Flow past an array of cells that are adherent to the bottom plate of a flow channel
,”
Computers & Fluids
, Vol.
25
, pp.
741
757
.
4.
Cao
J.
,
Donell
B.
,
Deaver
D. R.
,
Lawrence
M. B.
, and
Dong
C.
,
1998
, “
In vitro side-view imaging technique and analysis of human T-leukemic cell adhesion to ICAM-1 in shear flow
,”
Microvasc. Res.
, Vol.
55
, pp.
124
137
.
5.
Cao
J.
,
Usami
S.
, and
Dong
C.
,
1997
, “
Development of a side-view chamber for studying cell-surface adhesion under flow conditions
,”
Ann. Biomed. Eng.
, Vol.
25
, pp.
573
580
.
6.
Chen
S.
, and
Springer
T.
,
1999
, “
An automatic braking system that stabilizes leukocytes rolling by an increase in selectin bond number with shear
,”
J. Cell Biol.
, Vol.
144
, pp.
185
200
.
7.
Dembo
M.
,
Torney
D. C.
,
Saxman
K.
, and
Hammer
D.
,
1988
, “
The reaction-limited kinetics of membrane-to-surface adhesion and detachment
,”
Proc. R. Soc. Lond B
, Vol.
234
, pp.
55
83
.
8.
Dong
C.
,
Skalak
R.
, and
Sung
K.-L. P.
,
1991
, “
Cytoplasmic rheology of passive neutrophils
,”
Biorheology
, Vol.
28
, pp.
557
567
.
9.
Dong
C.
,
Skalak
R.
,
Sung
K.-L. P.
,
Schmidt-Schoenbein
G. W.
, and
Chien
S.
,
1988
, “
Passive deformation analysis of human leukocytes
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
, pp.
27
36
.
10.
Evans
E.
, and
Yeung
A.
,
1989
, “
Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration
,”
Biophys. J.
, Vol.
56
, pp.
151
160
.
11.
FIDAP, 1993, “Fluid dynamics international,” Version 7.0, Evanston, IL.
12.
Firrell
J. C.
, and
Lipowsky
H. H.
,
1989
, “
Leukocyte margination and deformation in mesenteric venules of rat
,”
Am. J. Physiol.
, Vol.
256
, pp.
H1667–H1674
H1667–H1674
.
13.
Gaver
D. P.
, and
Kute
S. M.
,
1998
, “
A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall
,”
Biophys. J.
, Vol.
75
, pp.
721
733
.
14.
Hallows
K. R.
, and
Frank
R. S.
,
1992
, “
Changes in mechanical properties with DMSO-induced differentiation of HL-60 cells
,”
Biorheol.
, Vol.
29
, pp.
295
309
.
15.
Hammer
D. A.
, and
Apte
S. M.
,
1992
, “
Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediatcd neutrophil adhesion
,”
Biophys. J.
, Vol.
63
, pp.
35
57
.
16.
House
S. D.
, and
Lipowsky
H. H.
,
1988
, “
In vivo determination of the force of leukocyte-endothelium adhesion in the mesenteric microvasculature of the cat
,”
Circ. Res.
, Vol.
63
, pp.
658
668
.
17.
IMSL, 1989, “Math/Library User’s manual,” Version 1.1, Houston, TX.
18.
Lawrence
M. B.
,
Kansas
G. S.
,
Kunkel
E. J.
, and
Ley
K.
,
1997
, “
Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E)
,”
J. Cell Biol.
, Vol.
136
, pp.
717
727
.
19.
Lawrence
M. B.
,
McIntire
L. V.
, and
Eskin
S. G.
,
1987
, “
Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion
,”
Blood
, Vol.
70
, pp.
1284
1290
.
20.
Lawrence
M. B.
, and
Springer
T. A.
,
1991
, “
Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins
,”
Cell
, Vol.
65
, pp.
859
873
.
21.
Lipowsky
H. H.
,
Riedel
D.
, and
Shi
G. S.
,
1991
, “
In vivo mechanical properties of leukocytes during adhesion to venular endothelium
,”
Biorheol.
, Vol.
28
, pp.
53
64
.
22.
Moazzam
F.
,
DeLano
F. A.
,
Zweifach
B. W.
, and
Schmid-Schonbein
G. W.
,
1997
, “
Leukocyte response to fluid stress
,”
Proc. Nat’l Acad. Sci. USA
, Vol.
94
, pp.
5338
5343
.
23.
Moore
K. L.
,
Patel
K. D.
,
Bruehl
R. E.
,
Li
F.
,
Johnson
D. A.
,
Lichenstein
H. S.
,
Cummings
R. D.
,
Bainton
D. F.
, and
McEver
R. P.
,
1995
, “
P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin
,”
J. Cell Biol.
, Vol.
128
, pp.
661
671
.
24.
Schmid-Schoenbein
G. W.
,
Skalak
R.
,
Simon
S. I.
, and
Engler
R. L.
,
1987
, “
The interaction between leukocytes and endothelium in vivo
,”
Ann. NY Acad. Sci.
, Vol.
516
, pp.
348
361
.
25.
Springer
T. A.
,
1994
, “
Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm
,”
Cell
, Vol.
76
, pp.
301
314
.
26.
Tozeren
A.
, and
Ley
K.
,
1992
, “
How do selectins mediate leukocyte rolling in venules?
,”
Biophys. J.
, Vol.
63
, pp.
700
709
.
27.
Tran-Son-Tay
R.
,
Kan
H. C.
,
Udaykumar
H. S.
, and
Shyy
W.
,
1998
, “
Rheological modeling of leukocytes
,”
Medical & Biological Engineering & Computing
, Vol.
36
, pp.
246
250
.
28.
Tsai
M. A.
,
Wauch
R. E.
, and
Keng
P. C.
,
1996
, “
Changes in HL-60 cell deformability during differentiation induced by DMSO
,”
Biorheol.
, Vol.
33
, pp.
1
15
.
29.
von Andrian
U. H.
,
1997
, “
A message for the journey: keeping leukocytes soft and silent
,”
Proc. Natl. Acad. Sci. USA
, Vol.
94
, pp.
4825
4827
.
30.
von Andrian
U. H.
,
Chambers
J. D.
,
McEvoy
L. M.
,
Bargatze
R. F.
,
Arfors
K. E.
, and
Butcher
E. C.
,
1991
, “
Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo
,”
Proc. Natl. Acad. Sci USA
, Vol.
88
, pp.
7538
7542
.
31.
Winn
R. K.
,
Liggitt
D.
,
Vedder
N. B.
,
Paulson
J. C.
, and
Harlan
J. M.
,
1993
, “
Anti-P-selectin monoclonal antibody attenuates reperfusion injury to the rabbit ear
,”
J. Clin. Invest.
, Vol.
92
, pp.
2042
2047
.
32.
Zhao
Y.
,
Chien
S.
, and
Skalak
R.
,
1995
, “
A stochastic model of leukocyte rolling
,”
Biophys. J.
, Vol.
69
, pp.
1309
1320
.
This content is only available via PDF.
You do not currently have access to this content.