Rose,
J. L.
, 2014, Ultrasonic Guided Waves in Solid Media,
Cambridge University Press,
Cambridge, UK.

Staszewski,
W. J.
,
Lee,
B. C.
,
Mallet,
L.
, and
Scarpa,
F.
, 2004, “
Structural Health Monitoring Using Scanning Laser Vibrometry—I: Lamb Wave Sensing,” Smart Mater. Struct.,
13(2), p. 251.

[CrossRef]
Socco,
L. V.
,
Foti,
S.
, and
Boiero,
D.
, 2010, “
Surface-Wave Analysis for Building Near-Surface Velocity Models-Established Approaches and New Perspectives,” Geophysics,
75(5), pp. 75A83–75A102.

[CrossRef]
Foti,
S.
,
Lai,
C. G.
,
Rix,
G. J.
, and
Strobbia,
C.
, 2014, Surface Wave Methods for Near-Surface Site Characterization,
CRC Press,
Boca Raton, FL.

Eslick,
R.
,
Tsoflias,
G.
, and
Steeples,
D.
, 2008, “
Field Investigation of Love Waves in Near-Surface Seismology,” Geophysics,
73(3), pp. G1–G6.

[CrossRef]
Stoneley,
R.
, 1924, “
Elastic Waves at the Surface of Separation of Two Solids,” Proc. R. Soc. London, Ser. A,
106(738), pp. 416–428.

[CrossRef]
Li,
B.
,
Lu,
T.
, and
Qiang,
L.
, 2016, “
Investigation of Stoneley Waves in Multilayered Plates,” Int. Scholarly Sci. Res. Innovation,
10(4), p. 3.

Lowe,
M. J.
, 1995, “
Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,
42(4), pp. 525–542.

[CrossRef]
Vrettos,
C.
, 1990, “
Dispersive SH-Surface Waves in Soil Deposits of Variable Shear Modulus,” Soil Dyn. Earthquake Eng.,
9(5), pp. 255–264.

[CrossRef]
Vrettos,
C.
, 1990, “
In‐Plane Vibrations of Soil Deposits With Variable Shear Modulus—I: Surface Waves,” Int. J. Numer. Anal. Methods Geomech.,
14(3), pp. 209–222.

[CrossRef]
Vrettos,
C.
, 1990, “
In‐Plane Vibrations of Soil Deposits With Variable Shear Modulus—II: Line Load,” Int. J. Numer. Anal. Methods Geomech.,
14(9), pp. 649–662.

[CrossRef]
Thomson,
W. T.
, 1950, “
Transmission of Elastic Waves Through a Stratified Solid Medium,” J. Appl. Phys.,
21(2), pp. 89–93.

[CrossRef]
Haskell,
N. A.
, 1953, “
The Dispersion of Surface Waves on Multilayered Media,” Bull. Seismol. Soc. Am.,
43(1), pp. 17–34.

Ke,
G.
,
Dong,
H.
,
Kristensen,
Å.
, and
Thompson,
M.
, 2011, “
Modified Thomson-Haskell Matrix Methods for Surface-Wave Dispersion-Curve Calculation and Their Accelerated Root-Searching Schemes,” Bull. Seismol. Soc. Am.,
101(4), pp. 1692–1703.

[CrossRef]
Wang,
L.
, and
Rokhlin,
S. I.
, 2001, “
Stable Reformulation of Transfer Matrix Method for Wave Propagation in Layered Anisotropic Media,” Ultrasonics,
39(6), pp. 413–424.

[CrossRef] [PubMed]
Rokhlin,
S. I.
, and
Wang,
L.
, 2002, “
Stable Recursive Algorithm for Elastic Wave Propagation in Layered Anisotropic Media: Stiffness Matrix Method,” J. Acoust. Soc. Am.,
112(3), pp. 822–834.

[CrossRef] [PubMed]
Schmidt,
H.
, and
Tango,
G.
, 1986, “
Efficient Global Matrix Approach to the Computation of Synthetic Seismograms,” Geophys. J. Int.,
84(2), pp. 331–359.

[CrossRef]
Pol,
C. B.
, and
Banerjee,
S.
, 2013, “
Modeling and Analysis of Propagating Guided Wave Modes in a Laminated Composite Plate Subject to Transient Surface Excitations,” Wave Motion,
50(5), pp. 964–978.

[CrossRef]
Kausel,
E.
, and
Roësset,
J. M.
, 1981, “
Stiffness Matrices for Layered Soils,” Bull. Seismol. Soc. Am.,
71(6), pp. 1743–1761.

Chen,
X. F.
, 1993, “
A Systematic and Efficient Method of Computing Normal Modes for Multilayered Half-Space,” Geophys. J. Int.,
115(2), pp. 391–409.

Pei,
D. H.
,
Louie,
J. N.
, and
Pullammanappallil,
S. K.
, 2008, “
Improvements on Computation of Phase Velocities of Rayleigh Waves Based on the Generalized R/T Coefficient Method,” Bull. Seismol. Soc. Am.,
98(1), pp. 280–287.

Ham,
S.
, and
Bathe,
K. J.
, 2012, “
A Finite Element Method Enriched for Wave Propagation Problems,” Comput. Struct.,
94, pp. 1–12.

Haque,
A. B. M. T.
,
Ghachi,
R. F.
,
Alnahhal,
W. I.
,
Aref,
A.
, and
Shim,
J.
, 2017, “
Generalized Spatial Aliasing Solution for the Dispersion Analysis of Infinitely Periodic Multilayered Composites Using the Finite Element Method,” ASME J. Vib. Acoust.,
139(5), p. 051010.

Karunasena,
W.
,
Shah,
A. H.
, and
Datta,
S. K.
, 1991, “
Wave Propagation in a Multilayered Laminated Cross-Ply Composite Plate,” ASME J. Appl. Mech.,
58(4), pp. 1028–1032.

Marzani,
A.
,
Viola,
E.
,
Bartoli,
I.
,
Di Scalea,
F. L.
, and
Rizzo,
P.
, 2008, “
A Semi-Analytical Finite Element Formulation for Modeling Stress Wave Propagation in Axisymmetric Damped Waveguides,” J. Sound Vib.,
318(3), pp. 488–505.

Park,
J.
, and
Kausel,
E.
, 2004, “
Numerical Dispersion in the Thin-Layer Method,” Comput. Struct.,
82(7), pp. 607–625.

Hamdan,
N.
,
Laghrouche,
O.
,
Woodward,
P.
, and
El-Kacimi,
A.
, 2015, “
Combined Paraxial-Consistent Boundary Conditions Finite Element Model for Simulating Wave Propagation in Elastic Half-Space Media,” Soil Dyn. Earthquake Eng.,
70, pp. 80–92.

de Oliveira Barbosa,
J. M.
,
Park,
J.
, and
Kausel,
E.
, 2012, “
Perfectly Matched Layers in the Thin Layer Method,” Comput. Methods Appl. Mech. Eng.,
217, pp. 262–274.

Kumar,
J.
, and
Naskar,
T.
, 2017, “
A Fast and Accurate Method to Compute Dispersion Spectra for Layered Media Using a Modified Kausel-Roësset Stiffness Matrix Approach,” Soil Dyn. Earthquake Eng.,
92, pp. 176–182.

Astaneh,
A. V.
, and
Guddati,
M. N.
, 2016, “
Improved Inversion Algorithms for Near-Surface Characterization,” Geophys. J. Int.,
206(2), pp. 1410–1423.

Astaneh,
A. V.
, and
Guddati,
M. N.
, 2016, “
Efficient Computation of Dispersion Curves for Multilayered Waveguides and Half-Spaces,” Comput. Methods Appl. Mech. Eng.,
300, pp. 27–46.

Wolf,
J. P.
, and
Song,
C. M.
, 2000, “
The Scaled Boundary Finite-Element Method—A Primer: Derivations,” Comput. Struct.,
78(1), pp. 191–210.

Gravenkamp,
H.
,
Song,
C. M.
, and
Prager,
J.
, 2012, “
A Numerical Approach for the Computation of Dispersion Relations for Plate Structures Using the Scaled Boundary Finite Element Method,” J. Sound Vib.,
331(11), pp. 2543–2557.

Lee,
U.
, 2009, Spectral Element Method in Structural Dynamics,
Wiley,
Singapore.

Rekatsinas,
C. S.
, and
Saravanos,
D. A.
, 2017, “
A Hermite Spline Layerwise Time Domain Spectral Finite Element for Guided Wave Prediction in Laminated Composite and Sandwich Plates,” ASME J. Vib. Acoust.,
139(3), p. 031009.

Komatitsch,
D.
, and
Tromp,
J.
, 1999, “
Introduction to the Spectral Element Method for Three-Dimensional Seismic Wave Propagation,” Geophys. J. Int.,
139(3), pp. 806–822.

Kudela,
P.
,
Żak,
A.
,
Krawczuk,
M.
, and
Ostachowicz,
W.
, 2007, “
Modelling of Wave Propagation in Composite Plates Using the Time Domain Spectral Element Method,” J. Sound Vib.,
302(4–5), pp. 728–745.

Seriani,
G.
, and
Oliveira,
S.
, 2008, “
Dispersion Analysis of Spectral Element Methods for Elastic Wave Propagation,” Wave Motion,
45(6), pp. 729–744.

Zhong,
W. X.
, 2004, “
On Precise Integration Method,” J. Comput. Appl. Math.,
163(1), pp. 59–78.

Zhang,
J.
,
Gao,
Q.
,
Tan,
S. J.
, and
Zhong,
W. X.
, 2012, “
A Precise Integration Method for Solving Coupled Vehicle-Track Dynamics With Nonlinear Wheel–Rail Contact,” J. Sound Vib.,
331(21), pp. 4763–4773.

Zhong,
W. X.
,
Lin,
J. H.
, and
Gao,
Q.
, 2004, “
The Precise Computation for Wave Propagation in Stratified Materials,” Int. J. Numer. Methods Eng.,
60(1), pp. 11–25.

Gao,
Q.
,
Lin,
J. H.
,
Zhong,
W. X.
,
Howson,
W. P.
, and
Williams,
F. W.
, 2006, “
A Precise Numerical Method for Rayleigh Waves in a Stratified Half Space,” Int. J. Numer. Methods Eng.,
67(6), pp. 771–786.

Chen,
L.
, 2015, “
Three-Dimensional Green's Function for an Anisotropic Multi-Layered Half-Space,” Comput. Mech.,
56(5), pp. 795–814.

Lin,
G.
,
Han,
Z. J.
, and
Li,
J. B.
, 2013, “
An Efficient Approach for Dynamic Impedance of Surface Footing on Layered Half-Space,” Soil Dyn. Earthquake Eng.,
49, pp. 39–51.

Wittrick,
W. H.
, and
Williams,
F. W.
, 1971, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures,” Q. J. Mech. Appl. Math.,
24(3), pp. 263–284.

Zhong,
W. X.
,
Williams,
F. W.
, and
Bennett,
P. N.
, 1997, “
Extension of the Wittrick-Williams Algorithm to Mixed Variable Systems,” ASME J. Vib. Acoust.,
119(3), pp. 334–340.

Williams,
F. W.
, and
Kennedy,
D.
, 2010, “
Historic, Recent and Ongoing Applications of the Wittrick-Williams Algorithm,” Comput. Technol. Rev.,
2, pp. 223–246.

Yuan,
S.
,
Ye,
K.
,
Xiao,
C.
,
Kennedy,
D.
, and
Williams,
F. W.
, 2014, “
Solution of Regular Second- and Fourth-Order Sturm-Liouville Problems by Exact Dynamic Stiffness Method Analogy,” J. Eng. Math.,
86(1), pp. 157–173.

Labib,
A.
,
Kennedy,
D.
, and
Featherston,
C.
, 2014, “
Free Vibration Analysis of Beams and Frames With Multiple Cracks for Damage Detection,” J. Sound Vib.,
333(20), pp. 4991–5003.

El-Kaabazi,
N.
, and
Kennedy,
D.
, 2012, “
Calculation of Natural Frequencies and Vibration Modes of Variable Thickness Cylindrical Shells Using the Wittrick–Williams Algorithm,” Comput. Struct.,
104, pp. 4–12.

Arnold,
V. I.
, 1989, Mathematical Methods of Classical Mechanics,
Springer-Verlag,
New York.

Goldstein,
H.
, 1980, Classical Mechanics,
Addison-Wesley,
London.