Research Papers

Comparison of Poroviscoelastic Models for Sound and Vibration in the Lungs

[+] Author and Article Information
Zoujun Dai, Ying Peng

University of Illinois at Chicago,
Chicago, IL 60607

Hansen A. Mansy

University of Central Florida,
Orlando, FL 32816
Rush University Medical Center,
Chicago, IL 60612

Richard H. Sandler

University of Central Florida,
Orlando, FL 32816
Nemours Children's Hospital,
Orlando, FL 32827

Thomas J. Royston

University of Illinois at Chicago,
Chicago, IL 60607
e-mail: troyston@uic.edu

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received October 31, 2013; final manuscript received December 18, 2013; published online July 25, 2014. Editor: Noel C. Perkins.

J. Vib. Acoust 136(5), 050905 (Jul 25, 2014) (11 pages) Paper No: VIB-13-1386; doi: 10.1115/1.4026436 History: Received October 31, 2013; Revised December 18, 2013

Noninvasive measurement of mechanical wave motion (sound and vibration) in the lungs may be of diagnostic value, as it can provide information about the mechanical properties of the lungs, which in turn are affected by disease and injury. In this study, two previously derived theoretical models of the vibroacoustic behavior of the lung parenchyma are compared: (1) a Biot theory of poroviscoelasticity and (2) an effective medium theory for compression wave behavior (also known as a “bubble swarm” model). A fractional derivative formulation of shear viscoelasticity is integrated into both models. A measurable “fast” compression wave speed predicted by the Biot theory formulation has a significant frequency dependence that is not predicted by the effective medium theory. Biot theory also predicts a slow compression wave. The experimentally measured fast compression wave speed and attenuation in a pig lung ex vivo model agreed well with the Biot theory. To obtain the parameters for the Biot theory prediction, the following experiments were undertaken: quasistatic mechanical indentation measurements were performed to estimate the lung static shear modulus; surface wave measurements were performed to estimate lung tissue shear viscoelasticity; and flow permeability was measured on dried lung specimens. This study suggests that the Biot theory may provide a more robust and accurate model than the effective medium theory for wave propagation in the lungs over a wider frequency range.

Copyright © 2014 by ASME
Topics: Waves , Lung , Compression
Your Session has timed out. Please sign back in to continue.


Faffe, D. S., and Zin, W. A., 2009, “Lung Parenchymal Mechanics in Health and Disease,” Physiol. Rev., 89, pp. 759–775. [CrossRef] [PubMed]
Goldstein, R. H., Lucey, E. C., Franzblau, C., and Snider, G. L., 1979, “Failure of Mechanical Properties to Parallel Changes in Lung Connective Tissue Composition in Bleomycin-Induced Pulmonary Fibrosis in Hamsters,” Am. Rev. Respir. Dis., 120(1), pp. 67–73. [PubMed]
Ebihara, T., Venkatesan, N., Tanaka, R., and Ludwig, M. S., 2000, “Changes in Extracellular Matrix and Tissue Viscoelasticity in Bleomycin-Induced Lung Fibrosis. Temporal Aspects,”Am. J. Respir. Crit. Care Med., 162, pp. 1569–1576. [CrossRef] [PubMed]
Salerno, F. G., and Ludwig, M. S., 1999, “Elastic Moduli of Excised Constricted Rat Lungs,” J. Appl. Physiol., 86(1), pp. 66–70. [PubMed]
Kononov, S., Brewer, K., Sakai, H., Cavalcante, F. S., Sabayanagam, C. R., Ingenito, E. P., and Suki, B., 2001, “Roles of Mechanical Forces and Collagen Failure in the Development of Elastase-Induced Emphysema,” Am. J. Respir. Crit. Care Med., 164, pp. 1920–1926. [CrossRef] [PubMed]
Ito, S., Ingenito, E. P., Brewer, K. K., Black, L. D., Parameswaran, H., Lutchen, K. R., and Suki, B., 2005, “Mechanics, Nonlinearity, and Failure Strength of Lung Tissue in a Mouse Model of Emphysema: Possible Role of Collagen Remodeling,” J. Appl. Physiol., 98, pp. 503–511. [CrossRef] [PubMed]
Chen, Q., Mai, V. M., Bankier, A. A., Napadow, V. J., Gilbert, R. J., and Edelman, R. R., 2001, “Ultrafast MR Grid-Tagging Sequence for Assessment of Local Mechanical Properties of the Lungs,” Magn. Reson. Med., 45(1), pp. 24–28. [CrossRef] [PubMed]
Napadow, V. J., Mai, V. M., Bankier, A. A., Gilbert, R. J., Edelman, R. R., and Chen, Q., 2001, “Determination of Regional Pulmonary Parenchymal Strain During Normal Respiration Using Spin Inversion Tagged Magnetization,” J. Magn. Reson. Imaging, 13(3), pp. 467–474. [CrossRef] [PubMed]
Murphy, R., 2007, “Computerized Multichannel Lung Sound Analysis: Development of Acoustic Instruments for Diagnosis and Management of Medical Conditions,” IEEE Eng. Med. Bio., 26, pp. 16–19. [CrossRef]
Charleston-Villalobos, S., Cortés-Rubiano, S., González-Camerena, R., Chi-Lem, G., and Aljama-Corrales, T., 2004, “Respiratory Acoustic Thoracic Imaging (RATHI): Assessing Deterministic Interpolation Techniques,” Med. Biol. Eng. Comput., 42(5), pp. 618–626. [CrossRef] [PubMed]
Kompis, M., Pasterkamp, H., and Wodicka, G. R., 2001, “Acoustic Imaging of the Chest,” Chest, 120, pp. 1309–1321. [CrossRef] [PubMed]
Dellinger, R. P., Parrillo, J. E., Kushnir, A., Rossi, M., and Kushnir, I., 2008, “Dynamic Visualization of Lung Sounds With a Vibration Response Device: A Case Series,” Respiration, 75(1), pp. 60–72. [CrossRef] [PubMed]
Maher, T. M., Gat, M., Allen, D., Devaraj, A., Wells, A. U., and Geddes, D. M., 2008, “Reproducibility of Dynamically Represented Acoustic Lung Images From Healthy Individuals,” Thorax, 63(6), pp. 542–548. [CrossRef] [PubMed]
Wang, Z., Jean, S., and Bartter, T., 2009, “Lung Sound Analysis in the Diagnosis of Obstructive Airway Disease,” Respiration, 77(2), pp. 134–138. [CrossRef] [PubMed]
Ozer, M. B., Acikgoz, S., Royston, T. J., Mansy, H. A., and Sandler, R. H., 2007, “Boundary Element Model for Simulating Sound Propagation and Source Localization Within the Lungs,” J. Acoust. Soc. Am., 122(1), pp. 657–671. [CrossRef] [PubMed]
Goss, B. C., McGee, K. P., Ehman, E. C., Manduca, A., and Ehman, R. L., 2006, “Magnetic Resonance Elastography of the Lung: Technical Feasibility,” Magn. Reson. Med., 56, pp. 1060–1066. [CrossRef] [PubMed]
McGee, K. P., Hubmayr, R. D., and Ehman, R. L., 2008, “MR Elastography of the Lung With Hyperpolarized 3He,” Magn. Reson. Med., 59, pp. 14–18. [CrossRef] [PubMed]
McGee, K. P., Lake, D., Mariappan, Y., Hubmayr, R. D., Manduca, A., Ansell, K., and Ehman, R. L., 2011, “Calculation of Shear Stiffness in Noise Dominated Magnetic Resonance Elastography Data Based on Principal Frequency Estimation,” Phys. Med. Biol., 56, pp. 4291–4309. [CrossRef] [PubMed]
Mariappan, Y. K., Kolipaka, A., Manduca, A., Hubmayr, R. D., Ehman, R. L., Araoz, P., and McGee, K. P., 2012, “Magnetic Resonance Elastography of the Lung Parenchyma in an In Situ Porcine Model With a Noninvasive Mechanical Driver: Correlation of Shear Stiffness With Trans-Respiratory System Pressures,” Magn. Reson. Med., 67, pp. 210–217. [CrossRef] [PubMed]
Sinkus, R., Tanter, M., Xydeas, T., Catheline, S., Bercoff, J., and Fink, M., 2005, “Viscoelastic Shear Properties of In Vivo Breast Lesions Measured by MR Elastography,” Magn. Reson. Imaging, 23(2), pp. 159–165. [CrossRef] [PubMed]
Shah, N. S., Kruse, S. A., Lager, D. J., Farell-Baril, G., Lieske, J. C., King, B. F., and Ehman, R. L., 2004, “Evaluation of Renal Parenchymal Disease in a Rat Model With Magnetic Resonance Elastography,” Magn. Reson. Med., 52(1), pp. 56–64. [CrossRef] [PubMed]
Kemper, J., Sinkus, R., Lorenzen, J., Nolte-Ernsting, C., Stork, A., and Adam, G., 2004, “MR Elastography of the Prostate: Initial In-Vivo Application,” Rofo, 176(8), pp. 1094–1099. [CrossRef] [PubMed]
Jenkyn, T. R., Ehman, R. L., and An, K., 2003, “Noninvasive Muscle Tension Measurement Using the Novel Technique of Magnetic Resonance Elastography (MRE),” J. Biomech., 36(12), pp. 1917–1921. [CrossRef] [PubMed]
Klatt, D., Hamhaber, U., Asbach, P., Braun, J., and Sack, I., 2007, “Noninvasive Assessment of the Rheological Behavior of Human Organs Using Multifrequency MR Elastography: A Study of Brain and Liver Viscoelasticity,” Phys. Med. Biol., 52(24), pp. 7281–7294. [CrossRef] [PubMed]
Rice, D. A., 1983, “Sound Speed in Pulmonary Parenchyma,” J. Appl. Physiol., 54(1), pp. 304–308.
Wodicka, G. R., Stevens, K. N., Golub, H. L., Cravalho, E. G., and Shannon, D. C., 1989, “A Model of Acoustic Transmission in the Respiratory System,” IEEE Trans. Biomed. Eng., 36, pp. 925–934. [CrossRef] [PubMed]
Royston, T. J., Zhang, X., Mansy, H. A., and Sandler, R. H., 2002, “Modeling Sound Transmission Through the Pulmonary System and Chest With Application to Diagnosis of a Collapsed Lung,” J. Acoust. Soc. Am., 111(4), pp. 1931–1946. [CrossRef] [PubMed]
Siklosi, M., Jensen, O. E., Tew, R. H., and Logg, A., 2008, “Multiscale Modeling of the Acoustic Properties of Lung Parenchyma,” ESAIM: Proc., 23, pp. 78–97. [CrossRef]
Royston, T. J., Dai, Z., Chaunsali, R., Liu, Y., Peng, Y., and Magin, R. L., 2011, “Estimating Material Viscoelastic Properties Based on Surface Wave Measurements: A Comparison of Techniques and Modeling Assumptions,” J. Acoust. Soc. Am., 130(6), pp. 4126–4138. [CrossRef] [PubMed]
Yasar, T. K., Royston, T. J., and Magin, R. L., 2013, “Wideband MR Elastography for Viscoelasticity Model Identification,” Magn. Reson. Med., 70, pp. 479–489. [CrossRef] [PubMed]
Kiss, M. Z., Varghese, T., and Hall, T. J., 2004, “Viscoelastic Characterization of In Vitro Canine Tissue,” Phys. Med. Biol., 49(18), pp. 4207–4218. [CrossRef] [PubMed]
Kohandel, M., Sivaloganathan, S., Tenti, G., and Darvish, K., 2005, “Frequency Dependence of Complex Moduli of Brain Tissue Using a Fractional Zener Model,” Phys. Med. Biol., 50(12), pp. 2799–2806. [CrossRef] [PubMed]
Sinkus, R., Siegmann, K., Xydeas, T., Tanter, M., Claussen, C., and Fink, M., 2007, “MR Elastography of Breast Lesions: Understanding the Solid/Liquid Duality Can Improve the Specificity of Contrast-Enhanced MR Mammography,” Magn. Reson. Med., 58(6), pp. 1135–1144. [CrossRef] [PubMed]
Zhang, M., Castaneda, B., Wu, Z., Nigwekar, P., Joseph, J. V., Rubens, D. J., and Parker, K. J., 2007, “Congruence of Imaging Estimators and Mechanical Measurements of Viscoelastic Properties of Soft Tissues,” Ultrasound Med. Biol., 33(10), pp. 1617–1631. [CrossRef] [PubMed]
Riek, K., Klatt, D., Nuzha, H., Mueller, S., Neumann, U., Sack, I., and Braun, J., 2011, “Wide-Range Dynamic Magnetic Resonance Elastography,” J. Biomech., 44(7), pp. 1380–1386. [CrossRef] [PubMed]
Biot, M. A., 1956, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. Acoust. Soc. Am., 28(2), pp. 168–178. [CrossRef]
Biot, M. A., 1956, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am., 28(2), pp. 179–191. [CrossRef]
Schanz, M., 2001, Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach, Springer, Berlin.
Bonnet, G., and Auriault, J. L., 1985, “Dynamics of Saturated and Deformable Porous Media: Homogenization Theory and Determination of the Solid-Liquid Coupling Coefficients,” Physics of Finely Divided Matter, Springer, Berlin.
Smeulders, D. M. J., 1992, “On Wave Propagation in Saturated and Partially Saturated Porous Media,” Ph.D. dissertation, Technische Universiteit Eindhoven, Eindhoven, Netherlands.
Bourbie, T., Coussy, O., and Zinszner, B., 1987, Acoustics of Porous Media, Gulf, Houston, TX.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd ed., McGraw-Hill, New York.
Butler, J. P., Nakamura, M., Sasaki, H., Sasaki, T., and Takishima, T., 1986, “Poissons' Ratio of Lung Parenchyma and Parenchymal Interaction With Bronchi,” Jpn. J. Physiol., 36(1), pp. 91–106. [CrossRef] [PubMed]
Lai-Fook, S., and Hyatt, R., 2000, “Effects of Age on Elastic Moduli of Human Lungs,” J. Appl. Physiol., 89(1), pp. 163–168. [PubMed]
Graff, K. F., 1991, Wave Motion in Elastic Solids, Dover, New York.
Hajari, A. J., Yablonskiy, D. A., Quirk, J. D., Sukstanskii, A. L., Pierce, R. A., Deslée, G., Conradi, M. S., and Woods, J. C., 2011, “Imaging Alveolar-Duct Geometry During Expiration Via 3He Lung Morphometry,” J. Appl. Physiol., 110, pp. 1448–1454. [CrossRef] [PubMed]
Plona, T. J., 1980, “Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies,” Appl. Phys. Lett., 36, pp. 259–261. [CrossRef]
Lakes, R., Yoon, H. S., and Katz, J. L., 1983, “Slow Compressional Wave Propagation in Wet Human and Bovine Cortical Bone,” Science, 220(4596), pp. 513–515. [CrossRef] [PubMed]
von Gierke, H. E., Oestreicher, H. L., Franke, E. K., Parrack, H. O., and von Wittern, W. W., 1952, “Physics of Vibrations in Living Tissue,” J. Appl. Physiol., 4, pp. 886–900. [PubMed]
Hajari, A. J., Yablonskiy, D. A., Sukstanskii, A. L., Quirk, J. D., Conradi, M. S., and Woods, J. C., 2012, “Morphometric Changes in the Human Pulmonary Acinus During Inflation,” J. Appl. Physiol., 112, pp. 937–943. [CrossRef] [PubMed]
Yen, R. T., Fung, Y. C., Ho, H. H., and Butterman, G., 1986, “Speed of Stress Wave Propagation in Lung,” J. Appl. Physiol., 61(2), pp. 701–705. [PubMed]
Zhang, X. M., Kinnick, R. R., and Greenleaf, J. F., 2008, “Viscoelasticity of Lung Tissue With Surface Wave Method,” IEEE Ultrasonics Symposium (IUS 2008), Beijing, November 2–5, pp. 21–23. [CrossRef]
Zhang, X. M., Qiang, B., Urban, M. W., Kinnick, R. R., Hubmayr, R., and Greenleaf, J. F., 2009, “Quantitative Surface Wave Method for Measuring Local Viscoelasticity of Lungs,” IEEE International Ultrasonics Symposium (IUS 2009), Rome, September 20–23, pp. 479–482. [CrossRef]
Mariappan, Y. K., Glaser, K. J., Levin, D. L., Vassallo, R., Hubmayr, R. D., Mottram, C., Ehman, R. L., and McGee, K. P., “Estimation of the Absolute Shear Stiffness of Human Lung Parenchyma Using 1H Spin Echo, Echo Planar MR Elastography,” J. Magn. Reson. Imaging, (in press). [CrossRef]


Grahic Jump Location
Fig. 1

Microscope image showing morphometric parameters h and r for an alveolar duct

Grahic Jump Location
Fig. 2

Compression and shear wave group velocity at 20 cm H2O Ptp, ––– fast compression wave, Biot theory, – – slow compression wave, Biot theory, – - – compression wave, effective medium model, - - - shear wave

Grahic Jump Location
Fig. 3

Compression and shear wave attenuation at 20 cm H2O Ptp, ––– fast compression wave, Biot theory, – – slow compression wave, Biot theory, – - – compression wave, effective medium model, - - - shear wave

Grahic Jump Location
Fig. 4

Experimental setup for surface wave measurement

Grahic Jump Location
Fig. 5

Schematic diagram of compression wave measurement

Grahic Jump Location
Fig. 6

Lung parenchyma permeability measurement (a) experimental setup and (b) schematic diagram

Grahic Jump Location
Fig. 7

Force and indentation depth relation in indentation measurement, ○ ○ ○ experiment, 20 cm H2O, ––– least square fit, 20 cm H2O, ◻ ◻ ◻ experiment, 10 cm H2O, – – least square fit, 10 cm H2O

Grahic Jump Location
Fig. 8

Surface wave speed, (a) 20 cm H2O and (b) 10 cm H2O, ○ ○ ○ experiment, line 1, ◻ ◻ ◻ experiment, line 2, ––– Voigt model least square fit, ––– fractional Voigt model least square fit, - - - SLS model least square fit

Grahic Jump Location
Fig. 9

Time history of the acceleration and velocity of a point at 400 Hz with 10 cm H2O as a result of a 20-cycle tone-burst input. The amplitude of the velocity is increased by 2000 times for ease of viewing here.

Grahic Jump Location
Fig. 10

Fast compression wave group velocity, ○ ○ ○ experiment, 20 cm H2O, ––– Biot theory, 20 cm H2O, –.– effective medium model, 20 cm H2O, ◻ ◻ ◻ experiment, 10 cm H2O, – – Biot theory, 10 cm H2O, - - - effective medium model, 10 cm H2O. Bars on the experimental data denote a 95% confidence interval, as described in Sec. 4.

Grahic Jump Location
Fig. 11

Fast compression wave attenuation, ○ ○ ○ experiment, 20 cm H2O, location 1, ◻ ◻ ◻ experiment, 20 cm H2O, location 2, ––– Biot theory, 20 cm H2O, –.– effective medium model, 20 cm H2O, △ △ △ experiment, 10 cm H2O, location 1, + + + experiment, 10 cm H2O, location 2, – – Biot theory, 10 cm H2O, - - - effective medium model, 10 cm H2O



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In