Technical Briefs

On the Relations Between Audio Features and Room Acoustic Parameters of Auralizations

[+] Author and Article Information
Salvador Cerdá

Associate Professor
Applied Mathematics Department,
Universitat Politècnica de València,
Camino de Vera s/n,
Valencia 46022, Spain
e-mail: salcerjo@mat.upv.es

Radu Lacatis

Applied Physics Department,
Universitat Politècnica de València,
Camino de Vera s/n,
Valencia 46022, Spain

Jaume Segura

Computer Science Department,
Universitat de València,
Polígon de la Coma s/n,
Paterna (Valencia) 46980, Spain

Rosa M. Cibrián

Universitat de València,
Blasco Ibañez,
Valencia 46010, Spain

Contributed by the Noise Control and Acoustics Division of ASME for publication in the Journal of Vibration and Acoustics. Manuscript received July 23, 2012; final manuscript received December 11, 2012; published online June 19, 2013. Assoc. Editor: Theodore Farabee.

J. Vib. Acoust 135(6), 064501 (Jun 19, 2013) (6 pages) Paper No: VIB-12-1206; doi: 10.1115/1.4023835 History: Received July 23, 2012; Revised December 11, 2012

The usual parameters in room acoustics are used to quantify the acoustic characteristics of rooms and their relation to the subjective perception of transmitted signals. Audio features (calculated with MIRToolbox) have been designed to study the relationships between the characteristics of musical audio files and their subjective perception. Both musical characteristics and acoustic parameters are oriented towards acoustic perception. By using auralizations with calibrated models of auditoriums and tools from the MIRtoolbox it is possible to jointly work with the calculation of audio features and room parameters. In this work, the statistical correlations between C80, STI, D50, EDT, RT and certain audio features have been analyzed. The Pearson r values are higher than 0.8 in all cases. These high correlations enable acoustic parameters to be calculated from the musical characteristics of auralized audio signals.

Copyright © 2013 by ASME
Topics: Acoustics , Signals
Your Session has timed out. Please sign back in to continue.


Vorlander, M., 2008, Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, Springer-Verlag, Berlin.
Prince, D., and Talaske, R., 1994, “Variation of Room Acoustic Measurements as a Function of Source Location and Directivity,” W. Clement Sabine Centennial Symposium, Cambridge, MA, June 5–7, pp. 211–214.
Martin, R. S., Witew, I., Arana, M., and Vorlander, M., 2007, “Influence of the Source Orientation on the Measurement of Acoustic Parameters,” Acta Acust., 93, pp. 387–397.
Otondo, F. and Rindel, J., 2004, “The Influence of the Directivity of Musical Instruments in a Room,” Acta Acust., 90, pp. 1178–1184.
Dalenback, B., Kleiner, M., and Svensson, P., 1993, “Audibility of Changes in Geometric Shape, Source Directivity, and Absorptive Treatment—Experiments in Auralization,” J. Audio Eng. Soc., 41, pp. 905–913.
Vigeant, M., Wang, L., and Rindel, J., 2011, “Objective and Subjective Evaluations of the Multi-Channel Auralization Technique as Applied to Solo Instruments,” Appl. Acoust., 72, pp. 311–323. [CrossRef]
Gil-Reyes, B., Jeong, C.-H., and Brunskog, J., 2011, “Room Acoustic Investigation of Actors' Positions and Orientations for Various Theatre Configurations in a Moderate-Sized Drama Theatre,” Appl. Acoust., 72, pp. 48–58. [CrossRef]
Lartillot, O., Toiviainen, P., and Eerola, T., 2008, “A MATLAB Toolbox for Music Information Retrieval,” Data Analysis, Machine Learning and Applications (Studies in Classification, Data Analysis, and Knowledge Organization), C.Preisach, H.Burkhardt, L.Schmidt-Thieme, and R.Decker, eds., Springer, Berlin/Heidelberg, pp. 261–268.
Lartillot, O., 2011, “MIRtoolbox 1.3.4 software,” Finnish Centre of Excellence in Interdisciplinary Music Research, University of Jyaskyla, Finland, https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
EN ISO 3382-1, 2009, “Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces,” International Organization for Standardization, Brussels, Belgium.
EN ISO 3382-2, 2008, “Acoustics—Measurement of Room Acoustic Parameters—Part 2: Reverberation Time in Ordinary Rooms,” International Organization for Standardization, Brussels, Belgium.
Kendrick, P., Cox, T. J., Li, F. F., Zhang, Y., and Chambers, J. A., 2008, “Monaural Room Acoustic Parameters From Music and Speech,” J. Acoust. Soc. Am., 124(1), pp. 278–287. [CrossRef] [PubMed]
Vieira, J., 2004, “Automatic Estimation of Reverberation Time,” 116th Convention of the Audio Engineering Society, Berlin, May 8–11.
Gaubitch, N. D., Loellmann, H. W., Jeub, M., Falk, T. H., Naylor, P. A., Vary, P., and Brookes, M., 2012, “Performance Comparison of Algorithms for Blind Reverberation Time Estimation From Speech,” Proceedings of the International Workshop on Acoustic Signal Enhancement (IWAENC 2012), Aachen, Germany, September 4–6.
Cerdá, S., Giménez, A., and Cibrián, R. M., 2012, “An Objective Scheme for Ranking Halls and Obtaining Criteria for Improvements and Design,” J. Audio Eng. Soc., 60(6), pp. 419–430.
Zeng, X., Christensen, C., and Rindel, J. H., 2006. “Practical Methods to Define Scattering Coefficients in a Room Acoustics Computer Model.” Appl. Acoust., 67, pp. 771–786. [CrossRef]
Christensen, C., and Rindel, J., 2005, “A New Scattering Method That Combines Roughness and Diffraction Effects,” Proceedings of Forum Acusticum, Budapest, Hungary, August 29–September 2.
Rindel, J. H., 2000, “The Use of Computer Modeling in Room Acoustics,” J. Vibroeng., 2(4), pp. 219–224.
Christensen, C., 2009, “Odeon Room Acoustics Program, Version 10.1, User Manual,” http://www.odeon.dk/pdf/OdeonManual10.pdf
Montell, R., Giménez, A., Segura, J., Planells, A., Barba, A., Cerdá, S., Cibrián, R., and Lacatis, R., 2011, “Simulación acústica de auditorios y edificios patrimoniales. Integración con entornos de realidad virtual,” International Seminar on Virtual Acoustics, Valencia, Spain, November 24–25.
Barba, A. and Giménez, A., 2011, El Teatro Principal de Valencia. Acústica y arquitectura escénica, Teatres de la Generalitat y Universitat Politècnica de València.
Lacatis, R., Cerdá, S., Giménez, A., and Romero, J., 2011, “Comparación de los parámetros acústicos obtenidos mediante dos programas de simulación con modelos geométricos de diferente complejidad de una sala,” Revista de Acustica, 42(1–2), pp. 33–42.
Cerda, S., Giménez, A., Cibrián, R., Segura, J., Montell, R., and Barba, A., 2012, “Objective Evaluation of the Width of Source Ensemble in Virtual Halls,” Proceedings of the Internoise 2012/ASME NCAD Meeting, New York, August 19–22.
Savioja, L., Huopaniemi, J., Lokki, T., and Väänänen, R., 1999, “Creating Interactive Virtual Acoustic Environments,” J. Audio. Eng. Soc., 47(9), pp. 675–705.
Seely, O., “Oliver's Clarinet Music Page,” http://www.csudh.edu/oliver/clarmusi/clarmusi.htm
Cerdá, S., Giménez, A., Romero, J., Cibrián, R., and Miralles, J., 2009, “Room Acoustical Parameters: A Factor Analysis Approach,” Appl. Acoust., 70(1), pp. 97–109. [CrossRef]
Cerdá, S., Giménez, A., Romero, J., and Cibrián, R., 2011, “A Factor Analysis Approach to Determining a Small Number of Parameters for Characterising Halls,” Acta Acust. Acust., 97, pp. 441–452. [CrossRef]
Gorsuch, R. L., 1983, Factor Analysis, Lawrence Erlbaum Associates, Hillsdale.
Slaney, M., 1998, “Auditory Toolbox, Version 2.0,” Interval Research Corporation, Technical Report No. 1998-010.


Grahic Jump Location
Fig. 1

3D models in ODEON

Grahic Jump Location
Fig. 2

RT30 calibration in each room. In the modified Paranimf, the simulated RT30, together with its range, is shown.

Grahic Jump Location
Fig. 3

Spatial distribution of sources

Grahic Jump Location
Fig. 4

Receivers where auralizations were computed together with source position (represented as shown in Fig. 3). From top to bottom: Paranimf, Lonja, and Principal Theater of Valencia.

Grahic Jump Location
Fig. 5

C80 versus dmfcc_std_mid at each room (top) and for each musical piece (bottom)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In