Improvement of a Reduced Torsional Model by Means of Parameter Identification

[+] Author and Article Information
P. Schwibinger, R. Nordmann

Department of Mechanical Engineering, University of Kaiserslautern, German Federal Republic

J. Vib., Acoust., Stress, and Reliab 111(1), 17-26 (Jan 01, 1989) (10 pages) doi:10.1115/1.3269817 History: Received June 01, 1986; Online November 23, 2009


Turbogenerator sets in operation may be excited to transient torsional vibrations by dynamic electrical moments at the generator due to short-circuits or faulty synchronization. For the solution of the torsional vibration problem it is essential to find an appropriate torsional model of the original system. A common approach is to model the torsional system finely by the finite element method which normally results in a very accurate mechanical model with many degrees of freedom (DOF). However for some applications it is desirable to have a torsional model with a reduced number of DOF which reproduces the original system exactly only in the lower eigenfrequencies and modes. This paper describes a method which allows finding a most accurate reduced torsional model with discrete masses and springs from a finite element model with many DOF. The results for the eigenfrequencies, the modes, and internal moments due to a short-circuit excitation of a 600 MW turbogenerator set are presented. They are compared with other reduction methods.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In