RESEARCH PAPERS: Turbomachinery

Natural Frequencies of Rotating Bladed Disks Using Clamped-Free Blade Modes

[+] Author and Article Information
S. J. Wildheim

Stal-Laval Turbin AB, Finspång, Sweden

J. Vib., Acoust., Stress, and Reliab 105(4), 416-424 (Oct 01, 1983) (9 pages) doi:10.1115/1.3269123 History: Received June 23, 1981; Online November 23, 2009


The problem of calculating the natural frequencies of a practical rotating bladed disk assembly is solved by use of a new dynamic substructuring method employing the free modes of the disk and the clamped-free modes of the blade. The bladed disk may have lacing-wires at any radius. The lacing-wire, or any other general elastic connection element, is assumed to extend around the whole circumference. Hence, the assembly fulfills the requirements for a circumferentially periodic structure. Centrifugal effects are included. The free modes of the disk are used to describe the dynamics of the disk by a 4 × 4 receptance matrix. The row of blades is described by a dynamic stiffness matrix of order 4 + 10l, where l is the number of lacing-wires. The dynamic stiffness matrix of the blading is formed directly from the modes of one single clamped-free blade without any lacing-wire. The lacing-wires are treated as elastic and massless. The zeroes of the resulting transcendental frequency determinant of order 4 + 10l are solved by the sign-count method. The calculation procedure has proved to be very efficient. Further, it enjoys the precious property of being automatic and infallible in the sense that there is no risk of missing any frequency whatever the spacing of natural frequencies. Experimentally found frequencies are compared to calculated ones.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In