Research Papers

Band Gaps in a Multiresonator Acoustic Metamaterial

[+] Author and Article Information
G. L. Huang1

Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR 72204glhuang@ualr.edu

C. T. Sun

School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907


Corresponding author.

J. Vib. Acoust 132(3), 031003 (Apr 14, 2010) (6 pages) doi:10.1115/1.4000784 History: Received March 11, 2009; Revised October 08, 2009; Published April 14, 2010; Online April 14, 2010

In this study, we investigated dispersion curves and the band gap structure of a multiresonator mass-in-mass lattice system. The unit cell of the lattice system consists of three separate masses connected by linear springs. It was demonstrated that the band gaps can be shifted by varying the spring constant and the magnitude of the internal masses. By using the conventional monatomic (single mass) lattice model as an equivalent system, the effective mass was found to become negative for frequencies in the band gaps. An attempt was made to represent the two-resonator mass-in-mass lattice with a microstructure continuum model. It was found that the microstructure continuum model can capture the dispersive behavior and band gap structure of the original two-resonator mass-in-mass system.

Copyright © 2010 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Figure 1

The two-resonator mass-in-mass lattice structure

Grahic Jump Location
Figure 2

Nondimensionalized dispersion curves for the one (solid line) and two-resonator (dash line) mass-in-mass systems with (a) k3/k2=0.01, (b) k3/k2=0.1, (c) k3/k2=2.0, and (d) k3/k2=5.0

Grahic Jump Location
Figure 3

Nondimensionalized dispersion curves for mass-in-mass systems (a) m3/m2=1.0 and (b) m3/m2=5.0

Grahic Jump Location
Figure 4

Dimensionless effective mass meff/mst as a function of ω/ω0 (one-resonator: dotted line; two-resonator: solid line): (a) k3/k2=0.1 and (b) k3/k2=2.0

Grahic Jump Location
Figure 5

Dispersion curves obtained from the microstructure continuum model compared with that from the two-resonator mass-in-mass lattice model: (a) acoustic mode and optic mode, and (b) third mode



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In