Time Frequency Characteristics of the Vibroacoustic Signal of Hydrodynamic Cavitation

[+] Author and Article Information
Yumei Wen

Education Ministry Key Lab of Optoelectronic Technology and System, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P.R. Chinae-mail: ymwen@cqu.edu.cn

Manus Henry

Department of Engineering Science, Oxford University, Oxford, OX1 3PJ, UKe-mail: manus.henry@eng.ox.ac.uk

J. Vib. Acoust 124(4), 469-475 (Sep 20, 2002) (7 pages) doi:10.1115/1.1500337 History: Received May 01, 2000; Revised March 01, 2002; Online September 20, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Harrison,  M., 1952, “An Experimental Study of Single Bubble Cavitation Noise,” J. Acoust. Soc. Am., 24, pp. 776–782.
Akulichev,  V. A., and Ol’shevskii,  V. V., 1968, “Statistical Characteristics of Cavitation Phenomena,” Sov. Phys. Acoust., 14(2), pp. 135–139.
Akulichev,  V. A., and Il’ichev,  V. I., 1963, “Spectral Indication of the Origin of Ultrasonic Cavitation in Water,” Sov. Phys. Acoust., 9(2), pp. 128–130.
Il’ichev,  V. I., and Lesunovskii,  V. P., 1963, “On the Noise Spectra Associated with Hydrodynamic Cavitation,” Sov. Phys. Acoust., 9(1), pp. 25–28.
Morozov,  V. P., 1969, “Cavitation Noise as a Train of Sound Pulses Generated at Random Times,” Sov. Phys. Acoust., 14(3), pp. 361–365.
Bajic,  and Branko,  and Keller,  Andreas,  1996, “Spectrum Normalization Method in Vibro-Acoustical Diagnostic Measurements of Hydroturbine Cavitation,” ASME J. Fluids Eng., 118, pp. 756–761.
Latorre,  Robert, 1997, “Bubble Cavitation Noise and the Cavitation Noise Spectrum,” Acustica, 83, pp. 424–429.
Ross, D., 1976, Mechanics of Underwater Noise, Pergamon Press, New York, chapter 7.
Cempel, C., 1991, Vibroacoustic Condition Monitoring, Ellis Horwood, New York, chapter 2.
Cessio,  S. L., and Brennen,  Christopher E., 1991, “Observation of the Dynamics and Acoustics of Travelling Bubble Cavitation,” J. Fluids Mech., 233, pp. 633–660.
Brennen, Christopher E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, Chapter 3.
Knapp, Robert T., Daily, James W., and Hammitt, Frederick G., 1970, Cavitation, McGraw-Hill Book Company, New York, chapter 2.
Kawanami,  Y., Kato,  H., Yamaguchi,  H., Tanimura,  M., and Tagaya,  Y., 1997, “Mechanism and Control of Cloud Cavitation,” ASME J. Fluids Eng., 119, pp. 788–794.
Reisman,  G. E., Wang,  Y.-C., and Brennen,  C. E., 1998, “Observations of Shock Waves in Cloud Cavitation,” J. Fluids Mech., 355, pp. 255–283.
Liu,  Zhenhuan, and Brennen,  Christopher E., 1998, “Cavitation Nuclei Population and Event Rates,” ASME J. Fluids Eng., 120, pp. 728–737.
Pham,  T. M., Michel,  J. M., and Lecoffre,  Y., 1997, “Dynamical Nuclei Measurement: on the Development and the Performance Evaluation of Optimized Center-Body Meter,” ASME J. Fluids Eng., 119, pp. 774–751.
Levkovskii,  Yu L., 1968, Modeling of Cavitation Noise, Sov. Phys. Acoust., 13(3), pp. 337–339.
Lyamshev,  L. M., 1970, “On the Theory of Hydrodynamic Cavitation Noise,” Sov. Phys. Acoust., 15(4), pp. 494–498.
Goodyear, C. C., 1971, Signals and Information, Butterworths, London, chapter 3.
Oppenheim, Alan V., and Willsky, Alan S., 1997, Signal & System (International Edition), Prentice Hall International, Inc., London, chapter 4.
Oppenheim, Alan V., and Schafer, Ronald W., 1999, Digital Signal Processing (International Edition), Prentice Hall International, Inc., London, chapter 2.
Urkowitz, Harry, 1983, Signal Theory and Random Processes, Artech House Inc., USA, chapter 1.
Il’in,  V. P., and Morozov,  V. P., 1974, “Experimental Determination of the Ratio of Cavitation Noise Energy to the Initial Bubble Energy,” Sov. Phys. Acoust., 20(3), pp. 250–252.


Grahic Jump Location
The spectrum of pulse group
Grahic Jump Location
Case 1: waveform of pulses with τ≥Tc=1/fc
Grahic Jump Location
The temporal waveform of pulse group with interval Tc/N≤τ<Tc. (a) The temporal waveform merely from the principal lobe. (b) The complete waveform.
Grahic Jump Location
The temporal waveform of pulse group with interval τ≤Tc/N
Grahic Jump Location
Schematic illustration of the experimental setup
Grahic Jump Location
Raw data sampled at 20 kHz and the power spectrum (a) The raw data. (b) The power spectra.
Grahic Jump Location
Raw data sampled at 50 kHz and the power spectrum. (a) The raw data. (b) The power spectra.
Grahic Jump Location
The spectra of noncavitation signals
Grahic Jump Location
(a) The waveform details of raw data sampled at 20 kHz, (b) the waveform details of raw data sampled at 50 kHz



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In