Phase-Locked Mode Stability for Coupled van der Pol Oscillators

[+] Author and Article Information
Duane W. Storti, Per G. Reinhall

Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600 (206)543-2956, FAX (206)685-8047

J. Vib. Acoust 122(3), 318-323 (Nov 01, 1999) (6 pages) doi:10.1115/1.1302314 History: Received November 01, 1999
Copyright © 2000 by ASME
Topics: Stability , Equations , Cycles
Your Session has timed out. Please sign back in to continue.


Landl,  R., 1975, “A Mathematical Model for Vortex-Induced Oscillation of Structures,” ASME J. Appl. Mech., 41, pp. 219–234.
van der Pol,  B., 1926, “On Relaxation Oscillations,” Philos. Mag., 7, pp. 978–992.
Cohen,  A. H., Holmes,  P. J., and Rand,  R. H., 1982, “The Nature of the Coupling between Segmental Oscillators of the Lamprey Spinal Generator for Locomotion: A Mathematical Model,” J. Math. Biol., 13, pp. 345–369.
Rand,  R. H., Storti,  D. W., Upadhyaya,  S. K., and Cooke,  J. R., 1981, “Dynamics of Coupled Stomatal Oscillators,” J. Math. Biol., 15, pp. 131–149.
Carrier,  G. F., 1953, “Boundary Layer Problems in Applied Mechanics,” Adv. Appl. Mech., 3, pp. 1–20.
Kevorkian, J., and Cole, J. D., 1981, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, pp. 67–82.
Bélair, J., 1983, “Phase Locking in Linearly Coupled Relaxation Oscillators,” Ph.D. thesis, Cornell University, Ithaca, NY.
Grasman, J., 1987, Asymptotic Methods for Relaxation Oscillations and Applications, Springer-Verlag, New York, pp. 55–72, 115–148.
Andersen,  C. M., and Geer,  J. F., 1982, “Power Series Expansions for the Frequency and Period of the Limit Cycle of the van der Pol Equation,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math., 42, pp. 678–693.
Dadfar,  M. B., Geer,  J., and Andersen,  C. M., 1984, “Perturbation Analysis of the Limit Cycle of the van der Pol Equation,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math., 44, pp. 881–895.
Gillies,  A. W., 1954, “On the Transformations of Singularities and Limit Cycles of the Variational Equations of van der Pol,” Q. J. Mech. Appl. Math., 7, pp. 152–167.
Holmes,  P. J., and Rand,  D. A., 1978, “Bifurcations of the Forced van der Pol Oscillator,” Q. Appl. Math., 35, pp. 495–509.
Palm,  E., and Tveitereid,  M., 1980, “On Coupled van der Pol Equations,” Q. J. Mech. Appl. Math., 33, pp. 267–276.
Glass,  L., and Mackey,  M. C., 1979, “A Simple Model For Phase Locking of Biological Oscillators,” J. Math. Biol., 7, pp. 339–352.
Chen, S.-S., 1987, Flow-Induced Vibration of Circular Cylindrical Structures, Springer-Verlag, New York.
Rand,  R. H., and Ellison,  J. L., 1986, “Dynamics of Stomate Fields in Leaves,” Lectures on Mathematics in the Life Sciences, 18, pp. 51–86.
Rand,  R. H., and Holmes,  P. J., 1980, “Bifurcation of Periodic Motions in Two Weakly Coupled van der Pol Oscillators,” Int. J. Non-Linear Mech. 15, pp. 387–399.
Nayfeh, A., 1983, Perturbation Methods, Wiley-Interscience, New York, pp. 270–275.
Storti,  D. W., and Rand,  R. H., 1982, “Dynamics of Two Strongly Coupled van der Pol Oscillators,” Int. J. Non-Linear Mech.17, pp. 143–152.
Chakraborty,  T., and Rand,  R. H., 1987, “The Transition From Phase Locking to Drift in a System of Two Weakly Coupled van der Pol Oscillators,” Int. J. Non-Linear Mech. 23, pp. 369–376.
Storti,  D. W., and Rand,  R. H., 1986, “Dynamics of Two Strongly Coupled Relaxation Oscillators,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math., 46, pp. 56–67.
Storti, D. W., Nevrinceanu, C., and Reinhall, P. G., 1993, “Perturbation Solution of an Oscillator with Periodic van der Pol Damping,” Dynamics and Vibration of Time-Varying Systems and Structures, ASME DE-Vol. 56, pp. 397–402.
Reinhall, P. G., and Storti, D. W., 1995, “A Numerical Investigation of Phase-Locked and Chaotic Behavior of Coupled van der Pol Oscillators,” ASME DE-Vol. 84-1, pp. 357–363.
Storti, D. W., and Reinhall, P. G., 1995, “Stability of In-Phase and Out-of-Phase Modes for a Pair of Linearly Coupled van der Pol Oscillators,” in Dynamics, Control, and Stability of Structures, A. Guran, ed., World Scientific, NJ, pp. 1–23.
Low, L. A., Reinhall, P. G., and Storti, D. W., 1999, “Analog Simulation of Phase Locked Modes of Diffusively Coupled van der Pol Oscillators,” Proceedings of ASME Design Engineering Technical Conferences, DETC99/VIB-8013.
Storti,  D. W., 1987, “Bifurcations Which Destroy the Out-of-Phase Mode in a Pair of Linearly Coupled Relaxation Oscillators,” Int. J. Non-Linear Mech. 22, pp. 387–390.
Magnus, W., and Winkler, S., 1966, Hill’s Equation, Interscience, New York.
Rand, R. H., 1984, Computer Algebra in Applied Mathematics: An Introduction to MACSYMA, Pitman Publishing, Boston, pp. 87–123.
Keith,  W. L., and Rand,  R. H., 1984, “1:1 and 2:1 Phase Entrainment in a System of Two Coupled Limit Cycle Oscillators,” J. Math. Biol., 20, pp. 133–152.
Murray, J. D., 1989, Mathematical Biology, Springer-Verlag, New York, pp. 266–273.


Grahic Jump Location
Numerically determined transition curves above which the in-phase mode is stable for: (a) ε=0.4, (b) ε=0.7, (c) ε=1.0, (d) ε=2.0
Grahic Jump Location
Visualization of the stability boundaries for the in-phase mode in the (A,B,ρ) parameter space, where ρ=ε/(1+ε), including A=−12,B=Bzmd,Dodd=0, and Deven=0. Curves shown represent stability transition curves determined numerically for ε=0.4, 0.7, 1.0, 2.0, and 5.0.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In