Finite Elements with Nonreflecting Boundary Conditions Formulated by the Helmholtz Integral Equation

[+] Author and Article Information
Shu-Wei Wu

Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 32054

J. Vib. Acoust 121(2), 214-220 (Apr 01, 1999) (7 pages) doi:10.1115/1.2893967 History: Received May 01, 1998; Online February 26, 2008


In the proposed approach, an acoustic domain is split into two parts by an arbitrary artificial boundary. The surrounding medium around the vibrating surface is discretized with finite elements up to the artificial boundary. The constraint equation specified on the artificial boundary is formulated with the Helmholtz integral equation straightforwardly, in which the source surface coincides with the vibrating surface discretized with boundary elements. To ensure the uniqueness of the numerical solution, the composite Helmholtz integral equation proposed by Burton and Miller was adopted. Due to the avoidance of singularity problems inherent in the boundary element formulation, this method is very efficient and easy to implement in an isoparametric element environment. It should be noted that the present method also can be applied to thin-body problems by using quarter-point elements.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In