A Separation Principle for Gyroscopic Conservative Systems

[+] Author and Article Information
L. Meirovitch

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

J. Vib. Acoust 119(1), 110-119 (Jan 01, 1997) (10 pages) doi:10.1115/1.2889678 History: Received April 01, 1995; Online February 26, 2008


Closed-form solutions to differential eigenvalue problems associated with natural conservative systems, albeit self-adjoint, can be obtained in only a limited number of cases. Approximate solutions generally require spatial discretization, which amounts to approximating the differential eigenvalue problem by an algebraic eigenvalue problem. If the discretization process is carried out by the Rayleigh-Ritz method in conjunction with the variational approach, then the approximate eigenvalues can be characterized by means of the Courant and Fischer maximin theorem and the separation theorem. The latter theorem can be used to demonstrate the convergence of the approximate eigenvalues thus derived to the actual eigenvalues. This paper develops a maximin theorem and a separation theorem for discretized gyroscopic conservative systems, and provides a numerical illustration.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In