The Dynamic Stiffness Method for Linear Rotor-Bearing Systems

[+] Author and Article Information
F. A. Raffa, F. Vatta

Dipartimento di Meccanica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

J. Vib. Acoust 118(3), 332-339 (Jul 01, 1996) (8 pages) doi:10.1115/1.2888186 History: Received January 01, 1994; Online February 26, 2008


The behavior of linear rotor-bearing systems is investigated by using the exact approach of the dynamic stiffness method, which entails the use of continuous rather than lumped models. In particular, the theoretical formulation for rotor systems with anisotropic bearings is developed by utilizing the complex representation of all the involved variables. The proposed formulation eventually leads to the 8 × 8 complex dynamic stiffness matrix of the rotating Timoshenko beam; this matrix proves to be related, by a simple rule, to the 4 × 4 dynamic stiffness matrix, which describes rotor systems with isotropic bearings. The method is first applied to the critical speeds evaluation of a simple rotor system with rigid supports; for this case, the exact results of the dynamic stiffness approach are compared to the usual convergence procedure of the finite element method. Successively, the steady-state unbalance response of two rotor systems with anisotropic supports is analyzed; for these examples, the dynamic stiffness results compare favorably with the results of the finite element and the transfer matrix analysis performed by other authors.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In