Modeling Fluid Inertia Forces of Short Journal Bearings for Rotordynamic Applications

[+] Author and Article Information
A. El-Shafei

Department of Mechanical Design and Production, Cairo University, Giza, Egypt

J. Vib. Acoust 117(4), 462-469 (Oct 01, 1995) (8 pages) doi:10.1115/1.2874479 History: Received April 01, 1993; Revised April 01, 1994; Online February 26, 2008


It has been recently suggested that fluid inertia may play an important role in the dynamic behavior of rotors supported on journal bearings. This paper presents a model for fluid inertia forces in short cylindrical journal bearings based on an energy approximation. The inertialess velocity profiles predicted by the solution of Reynolds’ equation are inserted in the axial momentum equation multiplied by the axial velocity profile and integrated across the film thickness, to obtain the pressure in short journal bearings including the fluid inertia effect. The pressure is then integrated to obtain the fluid inertia forces. It is shown that the inertia forces thus obtained are proportional to the usual radial, centripetal, tangential and coriolis accelerations of the journal, in addition to a nonlinear radial acceleration. Moreover, it is shown that the inertia forces contribute to the stiffness and damping characteristics of the journal bearings. The inertia coefficients of the bearings are obtained in cartesian and cylindrical coordinates, for both uncavitated and cavitated bearings, and are plotted versus the eccentricity ratio. The model thus obtained is an approximate analytical closed form model for fluid inertia forces in short journal bearings. Such a model is the most suitable for rotordynamic applications, particularly for time transient rotordynamic simulations.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In