Nonlinear Dynamics of an Oilless Linear Drive Reciprocating Compressor

[+] Author and Article Information
C. Minas

GE Corporate Research and Development Center, P.O. Box 8, K1 EP123, Schenectady, NY 12301

J. Vib. Acoust 116(1), 79-84 (Jan 01, 1994) (6 pages) doi:10.1115/1.2930401 History: Received September 01, 1992; Online June 17, 2008


Two modeling methodologies of the dynamics of a motor-compressor system are presented. The first approach considered only the mechanical system subjected to a sinusoidal input force with the pressure term in the equation of motion treated as a nonlinear stiffness term. The second methodology consisted of a mathematical model that couples the electromagnetic and thermodynamic equations to the dynamic equations that describe the motion of the piston. The mathematical model which consisted of a set of four first order simultaneous nonlinear time varying differential equations was solved by numerical integration routines that use the Adams-Moulton method with an adaptive integration step. The two methodologies are illustrated through an example. Steady-state operation was shown to be reached rapidly after a 0.13s transient. An analysis at various amplitudes and frequencies of the input voltage in the driver-coil of the motor showed the amplitude dependence of the natural frequency of the mechanical system, and a heavily damped system when operating at the design amplitude. The most efficient frequency of operation was also determined for a variety of required mass flow rates.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In