Investigation on the Steady-State Responses of Asymmetric Rotors

[+] Author and Article Information
Yuan Kang, Yuan-Pin Shih, An-Chen Lee

Department of Mechanical Engineering, National Chiao Tung University, Taiwan, R. O. C.

J. Vib. Acoust 114(2), 194-208 (Apr 01, 1992) (15 pages) doi:10.1115/1.2930249 History: Received March 01, 1991; Online June 17, 2008


This paper is to generalize the previous work by utilizing finite element formulation to accommodate the effects of both deviatoric inertia and stiffness due to asymmetry of flexible shaft and disk. A Timoshenko beam element is employed to simulate rotor-bearing systems by taking the gyroscopic moment, rotary inertia, shear deformation of shaft and, asymmetry of disk and shaft into account. Internal damping is not included but the extension is straightforward. Eulerian angles are used to describe the orientations of shaft element and disk, by which, in opposite to the vectorial approach, the mathematical formulation will be symmetric for angular displacements in two directions. The effects of the angle between the major axes of shaft and disk, deviatoric inertia of the asymmetric shaft, and characteristics of bearing on synchronous critical and subcritical speeds are estimated in conjunction with the harmonic balance method. Numerical examples show that the resonant speeds, at which peak responses occur, change due to various angles between major axes, asymmetry of shaft, stiffness, and damping of bearing.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In