Statistical Energy Analysis for the Time-Integrated Transient Response of Vibrating Systems

[+] Author and Article Information
M. L. Lai, A. Soom

Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260

J. Vib. Acoust 112(2), 206-213 (Apr 01, 1990) (8 pages) doi:10.1115/1.2930114 History: Received November 01, 1988; Revised June 01, 1989; Online June 17, 2008


For more than twenty years, statistical energy analysis (SEA) has been used for the analysis of steady-state response distributions in complex coupled structures and sound-structure systems. However, the steady-state SEA formalism is not directly applicable to the analysis of transient vibrations. In this paper, energy relations, analogous to steady-state SEA power flow relations, are derived for the time-integrated transient response of each oscillator. These energy flow relations can be combined using statistical concepts, to obtain a set of energy balance equations for N coupled multimodal subsystems. It is shown that the time-integrated response of each subsystem can be described in terms of transient input energies and conventional SEA parameters, i.e., modal densities, loss factors and coupling loss factors. By solving the energy balance equations, the time-integrated response of each subsystem can be obtained. The results of experiments, conducted on a coupled structure consisting of two welded plates, are presented to illustrate the applicability of these relations.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In