In a thermoacoustic system, such as a flame in a combustor, heat release oscillations couple with acoustic pressure oscillations. If the heat release is sufficiently in phase with the pressure, these oscillations can grow, sometimes with catastrophic consequences. Thermoacoustic instabilities are still one of the most challenging problems faced by gas turbine and rocket motor manufacturers. Thermoacoustic systems are characterized by many parameters to which the stability may be extremely sensitive. However, often only few oscillation modes are unstable. Existing techniques examine how a change in one parameter affects all (calculated) oscillation modes, whether unstable or not. Adjoint techniques turn this around: They accurately and cheaply compute how each oscillation mode is affected by changes in all parameters. In a system with a million parameters, they calculate gradients a million times faster than finite difference methods. This review paper provides: (i) the methodology and theory of stability and adjoint analysis in thermoacoustics, which is characterized by degenerate and nondegenerate nonlinear eigenvalue problems; (ii) physical insight in the thermoacoustic spectrum, and its exceptional points; (iii) practical applications of adjoint sensitivity analysis to passive control of existing oscillations, and prevention of oscillations with ad hoc design modifications; (iv) accurate and efficient algorithms to perform uncertainty quantification of the stability calculations; (v) adjoint-based methods for optimization to suppress instabilities by placing acoustic dampers, and prevent instabilities by design modifications in the combustor's geometry; (vi) a methodology to gain physical insight in the stability mechanisms of thermoacoustic instability (intrinsic sensitivity); and (vii) in nonlinear periodic oscillations, the prediction of the amplitude of limit cycles with weakly nonlinear analysis, and the theoretical framework to calculate the sensitivity to design parameters of limit cycles with adjoint Floquet analysis. To show the robustness and versatility of adjoint methods, examples of applications are provided for different acoustic and flame models, both in longitudinal and annular combustors, with deterministic and probabilistic approaches. The successful application of adjoint sensitivity analysis to thermoacoustics opens up new possibilities for physical understanding, control and optimization to design safer, quieter, and cleaner aero-engines. The versatile methods proposed can be applied to other multiphysical and multiscale problems, such as fluid–structure interaction, with virtually no conceptual modification.

References

1.
Oefelein
,
J. C.
, and
Yang
,
V.
,
1993
, “
Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines
,”
J. Propul. Power
,
9
(
5
), pp.
657
677
.
2.
Natanzon
,
A. S.
,
1999
,
Combustion Instability
, Vol.
222
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
3.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA .
4.
Culick
,
F. E. C.
,
2006
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” North Atlantic Treaty Organization, Brussels, Belgium, Report No. RTO AG-AVT-039.
5.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
6.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
7.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.
8.
Dowling
,
A. P.
, and
Ffowcs Williams
,
J. E.
,
1983
,
Sound and Sources of Sound
,
Ellis Horwood
,
Chichester, UK
.
9.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.
10.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.
11.
Bomberg
,
S.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2015
, “
Thermal Versus Acoustic Response of Velocity Sensitive Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3185
3192
.
12.
Courtine
,
E.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2015
, “
DNS of Intrinsic ThermoAcoustic Modes in Laminar Premixed Flames
,”
Combust. Flame
,
162
(
11
), pp.
4331
4341
.
13.
Silva
,
C. F.
,
Emmert
,
T.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2015
, “
Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame
,”
Combust. Flame
,
162
(
9
), pp.
3370
3378
.
14.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.
15.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.
16.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.
17.
Putnam
,
A. A.
, and
Dennis
,
W. R.
,
1954
, “
Burner Oscillations of the Gauze-Tone Type
,”
J. Acoust. Soc. Am.
,
26
(
5
), pp.
716
725
.
18.
Chu
,
B. T.
,
1956
, “
Stability of Systems Containing a Heat Source: The Rayleigh Criterion
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. RM–56D27.https://digital.library.unt.edu/ark:/67531/metadc62703/m1/2/
19.
Chu
,
B. T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow—Part I
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.
20.
Cantrell
,
R. H.
, and
Hart
,
R. W.
,
1964
, “
Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum and Energy Considerations
,”
J. Acoust. Soc. Am.
,
36
(
4
), pp.
697
706
.
21.
Candel
,
S. M.
,
1975
, “
Acoustic Conservation Principles and an Application to Plane and Modal Propagation in Nozzles and Diffusers
,”
J. Sound Vib.
,
41
(
2
), pp.
207
232
.
22.
Myers
,
M. K.
,
1991
, “
Transport of Energy by Disturbances in Arbitrary Steady Flows
,”
J. Fluid Mech.
,
226
(
1
), pp.
383
400
.
23.
Hanifi
,
A.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1996
, “
Transient Growth in Compressible Boundary Layer Flow
,”
Phys. Fluids
,
8
(
3
), p.
826
.
24.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.
25.
Karimi
,
N.
,
Brear
,
M. J.
, and
Moase
,
W. H.
,
2008
, “
Acoustic and Disturbance Energy Analysis of a Flow With Heat Communication
,”
J. Fluid Mech.
,
597
, pp.
67
89
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/acoustic-and-disturbance-energy-analysis-of-a-flow-with-heat-communication/502BDB8E26B805BB6346638493F5CF40
26.
George
,
K. J.
, and
Sujith
,
R. I.
,
2011
, “
On Chu's Disturbance Energy
,”
J. Sound Vib.
,
330
(
22
), pp.
5280
5291
.
27.
George
,
K. J.
, and
Sujith
,
R.
,
2012
, “
Disturbance Energy Norms: A Critical Analysis
,”
J. Sound Vib.
,
331
(
7
), pp.
1552
1566
.
28.
Brear
,
M. J.
,
Nicoud
,
F.
,
Talei
,
M.
,
Giauque
,
A.
, and
Hawkes
,
E. R.
,
2012
, “
Disturbance Energy Transport and Sound Production in Gaseous Combustion
,”
J. Fluid Mech.
,
707
, pp.
53
73
.
29.
Trefethen
,
L. N.
,
Trefethen
,
A. E.
,
Reddy
,
S. C.
, and
Driscoll
,
T. A.
,
1993
, “
Hydrodynamic Stability Without Eigenvalues
,”
Science
,
261
(
5121
), pp.
578
584
.
30.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2001
,
Stability and Transition of Shear Flows
,
Springer
,
New York
.
31.
Trefethen
,
L. N.
, and
Embree
,
M.
,
2005
,
Spectra and Pseudospectra
,
Princeton University Press
, Princeton, NJ.
32.
Schmid
,
P. J.
,
2007
, “
Nonmodal Stability Theory
,”
Ann. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.
33.
Schmid
,
P. J.
, and
Brandt
,
L.
,
2014
, “
Analysis of Fluid Systems: Stability, Receptivity, Sensitivity
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
021003
.http://appliedmechanicsreviews.asmedigitalcollection.asme.org/article.aspx?articleid=1884419
34.
Juniper
,
M. P.
,
2011
, “
Transient Growth and Triggering in the Horizontal Rijke Tube
,”
Int. J. Spray Combust. Dyn.
,
3
(
3
), pp.
209
224
.
35.
Balasubramanian
,
K.
, and
Sujith
,
R. I.
,
2008
, “
Non-Normality and Nonlinearity in Combustion-Acoustic Interaction in Diffusion Flames
,”
J. Fluid Mech.
,
594
, pp.
29
57
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/nonnormality-and-nonlinearity-in-combustionacoustic-interaction-in-diffusion-flames/F6874EEEE2B1EDD0ACA05320FD6C3701
36.
Balasubramanian
,
K.
, and
Sujith
,
R. I.
,
2008
, “
Thermoacoustic Instability in a Rijke Tube: Non-Normality and Nonlinearity
,”
Phys. Fluids
,
20
(
4
), p.
044103
.
37.
Balasubramanian
,
K.
, and
Sujith
,
R. I.
,
2013
, “
Non-Normality and Nonlinearity in Combustion-Acoustic Interaction in Diffusion Flames—CORRIGENDUM
,”
J. Fluid Mech.
,
733
, p.
680
.
38.
Magri
,
L.
,
Balasubramanian
,
K.
,
Sujith
,
R. I.
, and
Juniper
,
M. P.
,
2013
, “
Non-Normality in Combustion-Acoustic Interaction in Diffusion Flames: A Critical Revision
,”
J. Fluid Mech.
,
733
, pp.
681
684
.
39.
Sujith
,
R. I.
,
Juniper
,
M. P.
, and
Schmid
,
P. J.
,
2016
, “
Non-Normality and Nonlinearity in Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
8
(
2
), pp.
119
146
.
40.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
41.
Nagaraja
,
S.
,
Kedia
,
K.
, and
Sujith
,
R. I.
,
2009
, “
Characterizing Energy Growth During Combustion Instabilities: Singular values or Eigenvalues?
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2933
2940
.
42.
Juniper
,
M. P.
,
2011
, “
Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition
,”
J. Fluid Mech.
,
667
, pp.
272
308
.
43.
Waugh
,
I.
,
Geuß
,
M.
, and
Juniper
,
M.
,
2011
, “
Triggering, Bypass Transition and the Effect of Noise on a Linearly Stable Thermoacoustic System
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2945
2952
.
44.
Waugh
,
I. C.
, and
Juniper
,
M. P.
,
2011
, “
Triggering in a Thermoacoustic System With Stochastic Noise
,”
Int. J. Spray Combust. Dyn.
,
3
(
3
), pp.
225
242
.
45.
Wieczorek
,
K.
,
Sensiau
,
C.
,
Polifke
,
W.
, and
Nicoud
,
F.
,
2011
, “
Assessing Non-Normal Effects in Thermoacoustic Systems With Mean Flow
,”
Phys. Fluids
,
23
(
10
), p.
107103
.
46.
Mariappan
,
S.
, and
Sujith
,
R. I.
,
2010
, “
Thermoacoustic Instability in a Solid Rocket Motor: Non-Normality and Nonlinear Instabilities
,”
J. Fluid Mech.
,
653
, pp.
1
33
.
47.
Mariappan
,
S.
,
2011
, “
Theoretical and Experimental Investigation of the Non-Normal Nature of Thermoacoustic Interactions
,” Ph.D. thesis, IIT Madras, Chennai, India.
48.
Subramanian
,
P.
, and
Sujith
,
R. I.
,
2011
, “
Non-Normality and Internal Flame Dynamics in Premixed Flame-Acoustic Interaction
,”
J. Fluid Mech.
,
679
, pp.
315
342
.
49.
Magri
,
L.
,
2015
, “
Adjoint Methods in Thermo-Acoustic and Combustion Instability
,”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709417
50.
Blumenthal
,
R. S.
,
Tangirala
,
A. K.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2017
, “
A Systems Perspective on Non-Normality in Low-Order Thermoacoustic Models: Full Norms, Semi-Norms and Transient Growth
,”
Int. J. Spray Combust. Dyn.
,
9
(
1
), pp.
19
43
.
51.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2008
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME
Paper No. GT2008-50770.
52.
Pironneau
,
O.
,
1973
, “
On Optimum Profiles in Stokes Flow
,”
J. Fluid Mech.
,
59
(
1
), pp.
117
128
.
53.
Pironneau
,
O.
,
1974
, “
On Optimum Design in Fluid Mechanics
,”
J. Fluid Mech.
,
64
(
1
), pp.
97
110
.
54.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
55.
Jameson
,
A.
,
Martinelli
,
L.
, and
Pierce
,
N. A.
,
1998
, “
Optimum Aerodynamic Design Using the Navier–Stokes Equations
,”
Theor. Comput. Fluid Dyn.
,
10
(
1–4
), pp.
213
237
.
56.
Jameson
,
A.
,
1999
, “
Re-Engineering the Design Process Through Computation
,”
J. Aircr.
,
36
(
1
), pp.
36
50
.
57.
Liang
,
C.
,
Fidkowski
,
K.
,
Persson
,
P.-O.
, and
Vincent
,
P.
,
2014
, “
Celebrating the 80th Birthday of Professor Antony Jameson
,”
Comput. Fluids
,
98
, pp.
1
2
.
58.
Tumin
,
A. M.
, and
Fedorov
,
A. V.
,
1984
, “
Instability Wave Excitation by a Localized Vibrator in the Boundary Layer
,”
J. Appl. Mech. Tech. Phys.
,
25
(
6
), pp.
867
873
.
59.
Hill
,
D. C.
,
1992
, “
A Theoretical Approach for Analyzing the Restabilization of Wakes
,” National Aeronautics and Space Administration, Washington, DC, Memorandum No. 103858.
60.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
,
1990
, “
On the Formation and Suppression of Vortex ‘Shedding’ at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
(
1
), pp.
71
107
.
61.
Grosch
,
C. E.
, and
Salwen
,
H.
,
1978
, “
The Continuous Spectrum of the Orr-Sommerfeld Equation—Part 1: The Spectrum and the Eigenfunctions
,”
J. Fluid Mech.
,
87
(
1
), pp.
33
54
.
62.
Salwen
,
H.
, and
Grosch
,
C. E.
,
1981
, “
The Continuous Spectrum of the Orr-Sommerfeld Equation—Part 2: Eigenfunction Expansions
,”
J. Fluid Mech.
,
104
(
1
), pp.
445
465
.
63.
Hill
,
D. C.
,
1995
, “
Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers
,”
J. Fluid Mech.
,
292
(
1
), pp.
183
204
.
64.
Luchini
,
P.
, and
Bottaro
,
A.
,
1998
, “
Görtler Vortices: A Backward-In-Time Approach to the Receptivity Problem
,”
J. Fluid Mech.
,
363
, pp.
1
23
.
65.
Pralits
,
J. O.
,
Airiau
,
C.
,
Hanifi
,
A.
, and
Henningson
,
D. S.
,
2000
, “
Sensitivity Analysis Using Adjoint Parabolized Stability Equations for Compressible Flows
,”
Flow, Turbul. Combust.
,
65
(
3/4
), pp.
321
346
.
66.
Giannetti
,
F.
, and
Luchini
,
P.
,
2006
, “
Leading-Edge Receptivity by Adjoint Methods
,”
J. Fluid Mech.
,
547
(
1
), pp.
21
53
.
67.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
68.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.
69.
Schmid
,
P. J.
,
Henningson
,
D. S.
,
Khorrami
,
M. R.
, and
Malik
,
M. R.
,
1993
, “
A Study of Eigenvalue Sensitivity for Hydrodynamic Stability Operators
,”
Theor. Comput. Fluid Dyn.
,
4
(
5
), pp.
227
240
.
70.
Chomaz
,
J.-M.
,
1993
, “
Linear and Non-Linear, Local and Global Stability Analysis of Open Flows
,”
Turbulence in Spatially Extended Systems
,
Nova Science Publishers
, Hauppauge, NY, pp.
245
257
.
71.
Chomaz
,
J.-M.
,
2005
, “
Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
357
392
.
72.
Bottaro
,
A.
,
Corbett
,
P.
, and
Luchini
,
P.
,
2003
, “
The Effect of Base Flow Variation on Flow Stability
,”
J. Fluid Mech.
,
476
, pp.
293
302
.
73.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.
74.
Luchini
,
P.
,
Giannetti
,
F.
, and
Pralits
,
J. O.
,
2008
, “
Structural Sensitivity of Linear and Nonlinear Global Modes
,”
AIAA
Paper No. 2008-4227.
75.
Luchini
,
P.
,
Giannetti
,
F.
, and
Pralits
,
J.
,
2009
, “
Structural Sensitivity of the Finite-Amplitude Vortex Shedding Behind a Circular Cylinder
,” IUTAM Symposium on Unsteady Separated Flows and Their Control (IUTAM Bookseries, Vol. 14), M. Braza and K. Hourigan, eds., Springer, Dordrecht, The Netherlands, pp.
151
160
.
76.
Marino
,
L.
, and
Luchini
,
P.
,
2009
, “
Adjoint Analysis of the Flow Over a Forward-Facing Step
,”
Theor. Comput. Fluid Dyn.
,
23
(
1
), pp.
37
54
.
77.
Meliga
,
P.
,
Chomaz
,
J.-M.
, and
Sipp
,
D.
,
2009
, “
Unsteadiness in the Wake of Disks and Spheres: Instability, Receptivity and Control Using Direct and Adjoint Global Stability Analyses
,”
J. Fluids Struct.
,
25
(
4
), pp.
601
616
.
78.
Citro
,
V.
,
Tchoufag
,
J.
,
Fabre
,
D.
,
Giannetti
,
F.
, and
Luchini
,
P.
,
2016
, “
Linear Stability and Weakly Nonlinear Analysis of the Flow Past Rotating Spheres
,”
J. Fluid Mech.
,
807
, pp.
62
86
.
79.
Citro
,
V.
,
Siconolfi
,
L.
,
Fabre
,
D.
,
Giannetti
,
F.
, and
Luchini
,
P.
,
2017
, “
Stability and Sensitivity Analysis of the Secondary Instability in the Sphere Wake
,”
AIAA J.
,
55
(
11
), pp.
3661
3668
.
80.
Pralits
,
J. O.
,
Brandt
,
L.
, and
Giannetti
,
F.
,
2010
, “
Instability and Sensitivity of the Flow Around a Rotating Circular Cylinder
,”
J. Fluid Mech.
,
650
, pp.
1
24
.
81.
Tammisola
,
O.
,
2012
, “
Oscillatory Sensitivity Patterns for Global Modes in Wakes
,”
J. Fluid Mech.
,
701
, pp.
251
277
.
82.
Lashgari
,
I.
,
Pralits
,
J. O.
,
Giannetti
,
F.
, and
Brandt
,
L.
,
2012
, “
First Instability of the Flow of Shear-Thinning and Shear-Thickening Fluids Past a Circular Cylinder
,”
J. Fluid Mech.
,
701
, pp.
201
227
.
83.
Fani
,
A.
,
Camarri
,
S.
, and
Salvetti
,
M. V.
,
2012
, “
Stability Analysis and Control of the Flow in a Symmetric Channel With a Sudden Expansion
,”
Phys. Fluids
,
24
(
8
), p.
084102
.
84.
Tchoufag
,
J.
,
Magnaudet
,
J.
, and
Fabre
,
D.
,
2013
, “
Linear Stability and Sensitivity of the Flow Past a Fixed Oblate Spheroidal Bubble
,”
Phys. Fluids
,
25
(
5
), p.
054108
.
85.
Fani
,
A.
,
Camarri
,
S.
, and
Salvetti
,
M. V.
,
2013
, “
Investigation of the Steady Engulfment Regime in a Three-Dimensional T-Mixer
,”
Phys. Fluids
,
25
(
6
), p.
064102
.
86.
Fani
,
A.
,
Camarri
,
S.
, and
Salvetti
,
M. V.
,
2014
, “
Unsteady Asymmetric Engulfment Regime in a T-Mixer
,”
Phys. Fluids
,
26
(
7
), p.
074101
.
87.
Lashgari
,
I.
,
Tammisola
,
O.
,
Citro
,
V.
,
Juniper
,
M. P.
, and
Brandt
,
L.
,
2014
, “
The Planar X-Junction Flow: Stability Analysis and Control
,”
J. Fluid Mech.
,
753
, pp.
1
28
.
88.
Carini
,
M.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2014
, “
First Instability and Structural Sensitivity of the Flow Past Two Side-by-Side Cylinders
,”
J. Fluid Mech.
,
749
, pp.
627
648
.
89.
Boujo
,
E.
, and
Gallaire
,
F.
,
2014
, “
Controlled Reattachment in Separated Flows: A Variational Approach to Recirculation Length Reduction
,”
J. Fluid Mech.
,
742
, pp.
618
635
.
90.
Citro
,
V.
,
Giannetti
,
F.
,
Brandt
,
L.
, and
Luchini
,
P.
,
2015
, “
Linear Three-Dimensional Global and Asymptotic Stability Analysis of Incompressible Open Cavity Flow
,”
J. Fluid Mech.
,
768
, pp.
113
140
.
91.
Citro
,
V.
,
Giannetti
,
F.
, and
Pralits
,
J. O.
,
2015
, “
Three-Dimensional Stability, Receptivity and Sensitivity of Non-Newtonian Flows Inside Open Cavities
,”
Fluid Dyn. Res.
,
47
(
1
), p.
015503
.
92.
Tammisola
,
O.
,
Giannetti
,
F.
,
Citro
,
V.
, and
Juniper
,
M. P. P.
,
2014
, “
Second-Order Perturbation of Global Modes and Implications for Spanwise Wavy Actuation
,”
J. Fluid Mech.
,
755
, pp.
314
335
.
93.
Boujo
,
E.
,
Fani
,
A.
, and
Gallaire
,
F.
,
2015
, “
Second-Order Sensitivity of Parallel Shear Flows and Optimal Spanwise-Periodic Flow Modifications
,”
J. Fluid Mech.
,
782
, pp.
491
514
.
94.
Qadri
,
U. A.
,
Mistry
,
D.
, and
Juniper
,
M. P.
,
2013
, “
Structural Sensitivity of Spiral Vortex Breakdown
,”
J. Fluid Mech.
,
720
, pp.
558
581
.
95.
Qadri
,
U. A.
,
2014
, “
Global Stability and Control of Swirling Jets and Flames
,”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.https://www.repository.cam.ac.uk/handle/1810/245143
96.
Qadri
,
U. A.
,
Chandler
,
G. J.
, and
Juniper
,
M. P.
,
2018
, “
Passive Control of Global Instability in Low-Density Jets
,”
Eur. J. Mech.–B/Fluids
,
72
, pp.
311
319
.
97.
Meliga
,
P.
,
Sipp
,
D.
, and
Chomaz
,
J.-M.
,
2010
, “
Open-Loop Control of Compressible Afterbody Flows Using Adjoint Methods
,”
Phys. Fluids
,
22
(
5
), p.
054109
.
98.
Meliga
,
P.
,
Sipp
,
D.
, and
Chomaz
,
J.-M.
,
2010
, “
Effect of Compressibility on the Global Stability of Axisymmetric Wake Flows
,”
J. Fluid Mech.
,
660
, pp.
499
526
.
99.
Fedorov
,
A. V.
,
2013
, “
Receptivity of a Supersonic Boundary Layer to Solid Particulates
,”
J. Fluid Mech.
,
737
, pp.
105
131
.
100.
Giannetti
,
F.
,
Camarri
,
S.
, and
Luchini
,
P.
,
2010
, “
Structural Sensitivity of the Secondary Instability in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
651
, pp.
319
337
.
101.
Pralits
,
J. O.
,
Giannetti
,
F.
, and
Brandt
,
L.
,
2013
, “
Three-Dimensional Instability of the Flow Around a Rotating Circular Cylinder
,”
J. Fluid Mech.
,
730
, pp.
5
18
.
102.
Carini
,
M.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2014
, “
On the Origin of the Flip-Flop Instability of Two Side-By-Side Cylinder Wakes
,”
J. Fluid Mech.
,
742
, pp.
552
576
.
103.
Giannetti
,
F.
,
Camarri
,
V.
, and
Citro
,
V.
,
2019
, “
Sensitivity Analysis and Passive Control of the Secondary Instability in the Cylinder Wake
,”
J. Fluid Mech.
,
864
, pp.
45
72
.
104.
Crighton
,
D. G.
, and
Gaster
,
M.
,
1976
, “
Stability of Slowly Diverging Jet Flow
,”
J. Fluid Mech.
,
77
(
2
), pp.
397
413
.
105.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett.
,
75
(
5
), pp.
750
756
.
106.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.
107.
Beneddine
,
S.
,
Sipp
,
D.
,
Arnault
,
A.
,
Dandois
,
J.
, and
Lesshafft
,
L.
,
2016
, “
Conditions for Validity of Mean Flow Stability Analysis
,”
J. Fluid Mech.
,
798
, pp.
485
504
.
108.
McKeon
,
B. J.
, and
Sharma
,
A. S.
,
2010
, “
A Critical-Layer Framework for Turbulent Pipe Flow
,”
J. Fluid Mech.
,
658
, pp.
336
382
.
109.
Turton
,
S. E.
,
Tuckerman
,
L. S.
, and
Barkley
,
D.
,
2015
, “
Prediction of Frequencies in Thermosolutal Convection From Mean Flows
,”
Phys. Rev. E
,
91
(
4
), p.
43009
.
110.
Crouch
,
J. D.
,
Garbaruk
,
A.
, and
Magidov
,
D.
,
2007
, “
Predicting the Onset of Flow Unsteadiness Based on Global Instability
,”
J. Comput. Phys.
,
224
(
2
), pp.
924
940
.
111.
Fosas de Pando
,
M. A.
,
Sipp
,
D.
, and
Schmid
,
P. J.
,
2012
, “
Efficient Evaluation of the Direct and Adjoint Linearized Dynamics From Compressible Flow Solvers
,”
J. Comput. Phys.
,
231
(
23
), pp.
7739
7755
.
112.
Fosas de Pando
,
M.
,
Schmid
,
P. J.
, and
Sipp
,
D.
,
2014
, “
A Global Analysis of Tonal Noise in Flows Around Aerofoils
,”
J. Fluid Mech.
,
754
, pp.
5
38
.
113.
Meliga
,
P.
,
Pujals
,
G.
, and
Serre
,
E.
,
2012
, “
Sensitivity of 2-D Turbulent Flow Past a D-Shaped Cylinder Using Global Stability
,”
Phys. Fluids
,
24
(
6
), p.
061701
.
114.
Mettot
,
C.
,
Sipp
,
D.
, and
Bézard
,
H.
,
2014
, “
Quasi-Laminar Stability and Sensitivity Analyses for Turbulent Flows: Prediction of Low-Frequency Unsteadiness and Passive Control
,”
Phys. Fluids
,
26
(
4
), p.
045112
.
115.
Reynolds
,
W. C.
, and
Hussain
,
K. M. F.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow—Part 3: Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.
116.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.
117.
Camarri
,
S.
,
Fallenius
,
B. E. G.
, and
Fransson
,
J. H. M.
,
2013
, “
Stability Analysis of Experimental Flow Fields Behind a Porous Cylinder for the Investigation of the Large-Scale Wake Vortices
,”
J. Fluid Mech.
,
715
, pp.
499
536
.
118.
Camarri
,
S.
,
Trip
,
R.
, and
Fransson
,
J. H. M.
,
2017
, “
Investigation of Passive Control of the Wake Past a Thick Plate by Stability and Sensitivity Analysis of Experimental Data
,”
J. Fluid Mech.
,
828
, pp.
753
778
.
119.
Wang
,
Q.
, and
Gao
,
J.
,
2012
, “
The Drag-Adjoint Field of a Circular Cylinder Wake at Reynolds Numbers 20, 100 and 500
,”
J. Fluid Mech.
,
730
, pp.
145
161
.
120.
Pilyugin
,
S. Y.
,
2006
,
Shadowing in Dynamical Systems
,
Springer
, Berlin.
121.
Palmer
,
K. J.
,
2009
, “
Shadowing Lemma for Flows
,”
Scholarpedia
,
4
(
4
), p.
7918
.
122.
Wang
,
Q.
,
2013
, “
Forward and Adjoint Sensitivity Computation of Chaotic Dynamical Systems
,”
J. Comput. Phys.
,
235
, pp.
1
13
.
123.
Wang
,
Q.
,
Hu
,
R.
, and
Blonigan
,
P.
,
2014
, “
Least Squares Shadowing Sensitivity Analysis of Chaotic Limit Cycle Oscillations
,”
J. Comput. Phys.
,
267
, pp.
210
224
.
124.
Wang
,
Q.
,
2014
, “
Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages
,”
SIAM J. Numer. Anal.
,
52
(
1
), pp.
156
170
.
125.
Blonigan
,
P.
,
Gomez
,
S.
, and
Wang
,
Q.
,
2014
, “
Least Squares Shadowing for Sensitivity Analysis of Turbulent Fluid Flows
,”
AIAA
Paper No. 2014-1426.
126.
Blonigan
,
P. J.
, and
Wang
,
Q.
,
2014
, “
Probability Density Adjoint for Sensitivity Analysis of the Mean of Chaos
,”
J. Comput. Phys.
,
270
, pp.
660
686
.
127.
Ni
,
A.
, and
Wang
,
Q.
,
2017
, “
Sensitivity Analysis on Chaotic Dynamical Systems by Non-Intrusive Least Squares Shadowing (NILSS)
,”
J. Comput. Phys.
,
347
, pp.
56
77
.
128.
Chater
,
M.
,
Ni
,
A.
, and
Wang
,
Q.
,
2017
, “
Simplified Least Squares Shadowing Sensitivity Analysis for Chaotic ODEs and PDEs
,”
J. Comput. Phys.
,
329
, pp.
126
140
.
129.
Blonigan
,
P. J.
,
2017
, “
Adjoint Sensitivity Analysis of Chaotic Dynamical Systems With Non-Intrusive Least Squares Shadowing
,”
J. Comput. Phys.
,
348
, pp.
803
826
.
130.
Larsson
,
J.
, and
Wang
,
Q.
,
2014
, “
The Prospect of Using Large Eddy and Detached Eddy Simulations in Engineering Design, and the Research Required to Get There
,”
Philos. Trans. R. Soc. A
,
372
, p.
20130329
.https://royalsocietypublishing.org/doi/full/10.1098/rsta.2013.0329
131.
Kim
,
J.
,
Bodony
,
D. J.
, and
Freund
,
J. B.
,
2014
, “
Adjoint-Based Control of Loud Events in a Turbulent Jet
,”
J. Fluid Mech.
,
741
, pp.
28
59
.
132.
Caeiro
,
F.
,
Sovardi
,
C.
,
Förner
,
K.
, and
Polifke
,
W.
,
2017
, “
Shape Optimization of a Helmholtz Resonator Using an Adjoint Method
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
394
408
.
133.
Sipp
,
D.
,
Marquet
,
O.
,
Meliga
,
P.
, and
Barbagallo
,
A.
,
2010
, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030801
.
134.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.
135.
Camarri
,
S.
,
2015
, “
Flow Control Design Inspired by Linear Stability Analysis
,”
Acta Mech.
,
226
(
4
), pp.
979
1010
.
136.
Chandler
,
G. J.
,
Juniper
,
M. P.
,
Nichols
,
J. W.
, and
Schmid
,
P. J.
,
2012
, “
Adjoint Algorithms for the Navier–Stokes Equations in the Low Mach Number Limit
,”
J. Comput. Phys.
,
231
(
4
), pp.
1900
1916
.
137.
Qadri
,
U. A.
,
Chandler
,
G. J.
, and
Juniper
,
M. P.
,
2015
, “
Self-Sustained Hydrodynamic Oscillations in Lifted Jet Diffusion Flames: Origin and Control
,”
J. Fluid Mech.
,
775
, pp.
201
222
.
138.
Emerson
,
B.
,
Lieuwen
,
T.
, and
Juniper
,
M. P.
,
2016
, “
Local Stability Analysis and Eigenvalue Sensitivity of Reacting Bluff-Body Wakes
,”
J. Fluid Mech.
,
788
, pp.
549
575
.
139.
Sandu
,
A.
,
Daescu
,
D. N.
, and
Carmichael
,
G. R.
,
2003
, “
Direct and Adjoint Sensitivity Analysis of Chemical Kinetic Systems With KPP—Part I: Theory and Software Tools
,”
Atmos. Environ.
,
37
(
36
), pp.
5083
5096
.
140.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed Feb. 26, 2019, http://www.cantera.org
141.
Wang
,
Q.
,
Duraisamy
,
K.
,
Alonso
,
J. J.
, and
Iaccarino
,
G.
,
2012
, “
Risk Assessment of Scramjet Unstart Using Adjoint-Based Sampling Methods
,”
AIAA J.
,
50
(
3
), pp.
581
592
.
142.
Braman
,
K.
,
Oliver
,
T. A.
, and
Raman
,
V.
,
2015
, “
Adjoint-Based Sensitivity Analysis of Flames
,”
Combust. Theory Modell.
,
19
(
1
), pp.
29
56
.
143.
Duraisamy
,
K.
, and
Alonso
,
J.
,
2012
, “
Adjoint Based Techniques for Uncertainty Quantification in Turbulent Flows With Combustion
,”
AIAA
Paper No. 2012-2711.
144.
Yumuşak
,
M.
, and
Eyi
,
S.
,
2012
, “
Design Optimization of Rocket Nozzles in Chemically Reacting Flows
,”
Comput. Fluids
,
65
, pp.
25
34
.
145.
Copeland
,
S. R.
,
Palacios
,
F.
, and
Alonso
,
J. J.
,
2014
, “
Adjoint-Based Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-Equilibrium Flows
,”
AIAA
Paper No. 2014-0513.
146.
Lemke
,
M.
,
Reiss
,
J.
, and
Sesterhenn
,
J.
,
2013
, “
Adjoint-Based Analysis of Thermoacoustic Coupling
,”
AIP Conf. Proc.
,
1588
(
1
), pp.
2163
2166
.
147.
Lemke
,
M.
,
Reiss
,
J.
, and
Sesterhenn
,
J.
,
2014
, “
Adjoint Based Optimisation of Reactive Compressible Flows
,”
Combust. Flame
,
161
(
10
), pp.
2552
2564
.
148.
Sashittal
,
P.
,
Sayadi
,
T.
,
Schmid
,
P. J.
,
Jang
,
I.
, and
Magri
,
L.
,
2016
, “
Adjoint-Based Sensitivity Analysis for a Reacting Jet in Crossflow
,” Center for Turbulence Research, Summer Program, Stanford, CA, June 26–July 22, pp.
375
384
.
149.
Qadri
,
U. A.
,
Magri
,
L.
,
Ihme
,
M.
, and
Schmid
,
P. J.
,
2016
, “
Optimal Ignition Placement in Diffusion Flames by Nonlinear Adjoint Looping
,” Center for Turbulence Research, Summer Program, Stanford, CA, June 26–July 22, pp. 95–104.
150.
Blanchard
,
M.
,
Schmid
,
P. J.
,
Sipp
,
D.
, and
Schuller
,
T.
,
2016
, “
Pressure Wave Generation From Perturbed Premixed Flames
,”
J. Fluid Mech.
,
797
, pp.
231
246
.
151.
Skene
,
C. S.
, and
Schmid
,
P. J.
,
2019
, “
Adjoint-Based Parametric Sensitivity Analysis for Swirling M-Flames
,”
J. Fluid Mech.
,
859
, pp.
516
542
.
152.
Capecelatro
,
J.
,
Bodony
,
D. J.
, and
Freund
,
J. B.
,
2018
, “
Adjoint-Based Sensitivity and Ignition Threshold Mapping in a Turbulent Mixing Layer
,”
Combust. Theory Modell.
(epub).
153.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.
154.
Magri
,
L.
, and
Juniper
,
M. P.
,
2014
, “
Adjoint-Based Linear Analysis in Reduced-Order Thermo-Acoustic Models
,”
Int. J. Spray Combust. Dyn.
,
6
(
3
), pp.
225
246
.
155.
Rigas
,
G.
,
Jamieson
,
N. P.
,
Li
,
L. K. B.
, and
Juniper
,
M. P.
,
2016
, “
Experimental Sensitivity Analysis and Control of Thermoacoustic Systems
,”
J. Fluid Mech.
,
787
, p.
R1
.
156.
Jamieson
,
N. P.
,
Rigas
,
G.
, and
Juniper
,
M. P.
,
2017
, “
Experimental Sensitivity Analysis Via a Secondary Heat Source in an Oscillating Thermoacoustic System
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
230
240
.
157.
Jamieson
,
N. P.
, and
Juniper
,
M. P.
,
2017
, “
Experimental Sensitivity Analysis and the Equivalence of Pulsed Forcing and Feedback Control in Thermoacoustic Systems
,”
ASME
Paper No. GT2017-63441.
158.
Magri
,
L.
, and
Juniper
,
M. P.
,
2014
, “
Global Modes, Receptivity, and Sensitivity Analysis of Diffusion Flames Coupled With Duct Acoustics
,”
J. Fluid Mech.
,
752
, pp.
237
265
.
159.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
A Theoretical Approach for Passive Control of Thermoacoustic Oscillations: Application to Ducted Flames
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091604
.
160.
Orchini
,
A.
, and
Juniper
,
M. P.
,
2016
, “
Linear Stability and Adjoint Sensitivity Analysis of Thermoacoustic Networks With Premixed Flames
,”
Combust. Flame
,
165
, pp.
97
108
.
161.
Magri
,
L.
,
See
,
Y.-C.
,
Tammisola
,
O.
,
Ihme
,
M.
, and
Juniper
,
M.
,
2017
, “
Multiple-Scale Thermo-Acoustic Stability Analysis of a Coaxial Jet Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3863
3871
.
162.
Aguilar
,
J. G.
,
Magri
,
L.
, and
Juniper
,
M. P.
,
2017
, “
Adjoint-Based Sensitivity Analysis of Low Order Thermoacoustic Networks Using a Wave-Based Approach
,”
J. Comput. Phys.
,
341
, pp.
163
181
.
163.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.
164.
Silva
,
C. F.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2016
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.
165.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part I: Sensitivity
,”
J. Comput. Phys.
,
325
, pp.
411
421
.
166.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.
167.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2018
, “
Methods for the Calculation of Thermoacoustic Stability Margins and Monte Carlo Free Uncertainty Quantification
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061501
.
168.
Floquet
,
G.
,
1883
, “
Sur Les Équations Différentielles Linéaires à coefficients Périodiques
,”
Ann. Sci. L'École Norm. Supér., Série 2
,
12
, pp.
47
88
.
169.
Bloch
,
F.
,
1929
, “
Über Die Quantenmechanik Der Elektronen in Kristallgittern
,”
Z. Für Phys.
,
52
(
7–8
), pp.
555
600
.
170.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Limit Cycles of Spinning Thermoacoustic Modes in Annular Combustors: A Bloch-Wave and Adjoint-Perturbation Approach
,”
ASME
Paper No. GT2017-64817.
171.
Mensah
,
G. A.
,
Magri
,
L.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2018
, “
Effects of Asymmetry on Thermoacoustic Modes in Annular Combustors: A Higher-Order Perturbation Study
,”
ASME
Paper No. GT2018-76797.
172.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.
173.
Aguilar
,
J.
, and
Juniper
,
M. P.
,
2018
, “
Adjoint Methods for Elimination of Thermoacoustic Oscillations in a Model Annular Combustor Via Small Geometry Modifications
,”
ASME
Paper No. GT2018-75692.
174.
Aguilar
,
J.
, and
Juniper
,
M. P.
,
2018
, “
Shape Optimization in Low-Order Thermoacoustic Networks
,” GPPS Forum 18, Global Power and Propulsion Society, Zurich, Switzerland, Jan. 10–12, Paper No. GPPS–2018–0024.
175.
Silva
,
C. F.
,
Yong
,
K. J.
, and
Magri
,
L.
,
2018
, “
Thermoacoustic Modes of Quasi-One-Dimensional Combustors in the Region of Marginal Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021022
.
176.
Juniper
,
M. P.
,
2018
, “
Sensitivity Analysis of Thermoacoustic Instability With Adjoint Helmholtz Solvers
,”
Phys. Rev. Fluids
,
3
, p.
110509
.
177.
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Robust Identification of Harmonic Oscillator Parameters Using the Adjoint Fokker-Planck Equation
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20160894
.
178.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.
179.
Noiray
,
N.
,
2016
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.
180.
Noiray
,
N.
, and
Denisov
,
A.
,
2017
, “
A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3843
3850
.
181.
Orchini
,
A.
,
Rigas
,
G.
, and
Juniper
,
M. P.
,
2016
, “
Weakly Nonlinear Analysis of Thermoacoustic Bifurcations in the Rijke Tube
,”
J. Fluid Mech.
,
805
, pp.
523
550
.
182.
Landau
,
L. D.
,
1944
, “
On the Problem of Turbulence
,”
Dokl. Akad. Nauk SSSR
,
44
(
8
), pp.
339
349
.
183.
Stuart
,
J. T.
,
1958
, “
On the Non-Linear Mechanics of Hydrodynamic Stability
,”
J. Fluid Mech.
,
4
(
1
), pp.
1
21
.
184.
Stuart
,
J. T.
,
1971
, “
Nonlinear Stability Theory
,”
Annu. Rev. Fluid Mech.
,
3
(
1
), pp.
347
370
.
185.
Provansal
,
M.
,
Mathis
,
C.
, and
Boyer
,
L.
,
1987
, “
Bénard-von Kármán Instability: Transient and Forced Regimes
,”
J. Fluid Mech.
,
182
(
1
), pp.
1
22
.
186.
Dušek
,
J.
,
Le Gal
,
P.
, and
Fraunié
,
P.
,
1994
, “
A Numerical and Theoretical Study of the First Hopf Bifurcation in a Cylinder Wake
,”
J. Fluid Mech.
,
264
(
1
), pp.
59
80
.
187.
Lieuwen
,
T.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
188.
Eckstein
,
J.
, and
Sattelmayer
,
T.
,
2006
, “
Low-Order Modeling of Low-Frequency Combustion Instabilities in AeroEngines
,”
J. Propul. Power
,
22
(
2
), pp.
425
432
.
189.
Williams
,
F. A.
,
1985
,
Combustion Theory
,
Perseus Books
,
Reading, MA
.
190.
Kuo
,
K. K.
,
1986
,
Principles of Combustion
,
Wiley
, Hoboken, NJ.
191.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
192.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
R. T.
Edwards
, Philadelphia, PA.
193.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
194.
Rienstra
,
S.
, and
Hirschberg
,
A.
,
2004
, “
An Introduction to Acoustics
,” accessed Feb. 26, 2019, https://www.win.tue.nl/ ∼sjoerdr/papers/boek.pdf
195.
Magri
,
L.
,
2017
, “
On Indirect Noise in Multi-Component Nozzle Flows
,”
J. Fluid Mech.
,
828
, p.
R2
.
196.
Magri
,
L.
,
O'Brien
,
J.
, and
Ihme
,
M.
,
2016
, “
Compositional Inhomogeneities as a Source of Indirect Combustion Noise
,”
J. Fluid Mech.
,
799
, p.
R4
.
197.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(
1
), pp.
67
111
.
198.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.
199.
Krebs
,
W.
,
Walz
,
G.
,
Flohr
,
P.
, and
Hoffman
,
S.
,
2001
, “
Modal Analysis of Annular Combustors: Effect of Burner Impedance
,”
ASME
Paper No. 2001-GT-0042.
200.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT-2002-30064.
201.
Camporeale
,
S. M.
,
Bari
,
P.
,
David
,
R.
,
Bottaro
,
A.
,
Campa
,
G.
,
Camporeale
,
S. M.
,
Guaus
,
A.
,
Favier
,
J.
,
Bargiacchi
,
M.
,
Bottaro
,
A.
,
Cosatto
,
E.
, and
Mori
,
M.
,
2011
, “
A Quantitative Comparison Between a Low Order Model and a 3D FEM Code for the Study of Thermoacoustic Combustion Instabilities
,”
ASME
Paper No. GT2011-45969.
202.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.
203.
Rayleigh
,
J. W. S. B.
,
1896
,
The Theory of Sound
, Vol.
2
,
Macmillan
, London.
204.
Carrier
,
G. F.
,
1955
, “
The Mechanics of the Rijke Tube
,”
Q. Appl. Math.
,
12
(
4
), pp.
383
395
.
205.
Heckl
,
M. A.
,
1988
, “
Active Control of the Noise From a Rijke Tube
,”
J. Sound Vib.
,
124
(
1
), pp.
117
133
.
206.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
207.
Schuermans
,
B. B. H.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132.
208.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(
3
), pp.
483
510
.
209.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037.
210.
Dowling
,
A. P.
, and
Morgans
,
A. S.
,
2005
, “
Feedback Control of Combustion Oscillations
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
151
182
.
211.
Morfey
,
C. L.
,
1973
, “
Amplification of Aerodynamic Noise by Convected Flow Inhomogeneities
,”
J. Sound Vib.
,
31
(
4
), pp.
391
397
.
212.
Strobio Chen
,
L.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.
213.
Bloxsidge
,
G. J.
,
Dowling
,
A. P.
, and
Langhorne
,
P. J.
,
1988
, “
Reheat Buzz: An Acoustically Coupled Combustion Instability—Part 2: Theory
,”
J. Fluid Mech.
,
193
(
1
), pp.
445
473
.
214.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
215.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Berat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.
216.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
217.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2014
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021503
.
218.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor
,”
Combust. Flame
,
175
, pp.
283
291
.
219.
Laera
,
D.
,
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
,
Camporeale
,
S.
, and
Candel
,
S.
,
2017
, “
Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051505
.
220.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2004
, “
Low-Order Modelling of Thermoacoustic Limit Cycles
,”
ASME
Paper No. GT2004-54245.
221.
Bauerheim
,
M.
,
Parmentier
,
J. F.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
An Analytical Model for Azimuthal Thermoacoustic Modes in an Annular Chamber Fed by an Annular Plenum
,”
Combust. Flame
,
161
(
5
), pp.
1374
1389
.
222.
Orchini
,
A.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2018
, “
Effects of Nonlinear Modal Interactions on the Thermoacoustic Stability of Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
, p.
021002
.
223.
Peters
,
N.
,
1992
, “
Fifteen Lectures on Laminar and Turbulent Combustion
,”
Ercoftac Summer School
, Aachen, Germany, Sept. 14–28.https://www.itv.rwth-aachen.de/fileadmin/Downloads/Summerschools/SummerSchool.pdf
224.
Tyagi
,
M.
,
Chakravarthy
,
S. R.
, and
Sujith
,
R. I.
,
2007
, “
Unsteady Combustion Response of a Ducted Non-Premixed Flame and Acoustic Coupling
,”
Combust. Theory Modell.
,
11
(
2
), pp.
205
226
.
225.
Tyagi
,
M.
,
Jamadar
,
N.
, and
Chakravarthy
,
S.
,
2007
, “
Oscillatory Response of an Idealized Two-Dimensional Diffusion Flame: Analytical and Numerical Study
,”
Combust. Flame
,
149
(
3
), pp.
271
285
.
226.
Magina
,
N. A.
, and
Lieuwen
,
T. C.
,
2016
, “
Effect of Axial Diffusion on the Response of Diffusion Flames to Axial Flow Perturbations
,”
Combust. Flame
,
167
, pp.
395
408
.
227.
Dowling
,
A. P.
,
1999
, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
,
394
, pp.
51
72
.
228.
Schuller
,
T.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2002
, “
Modeling Tools for the Prediction of Premixed Flame
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
107
113
.
229.
Lieuwen
,
T.
,
2005
, “
Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1725
1732
.
230.
Preetham
,
S. H.
, and
Lieuwen
,
T. C.
,
2007
, “
Response of Turbulent Premixed Flames to Harmonic Acoustic Forcing
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1427
1434
.
231.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Non Linear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.
232.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.
233.
Crocco
,
L.
, and
Cheng
,
S.-I.
,
1956
, “
Theory of Combustion Instability in Liquid Propellant Rocket Motors
,” The Advisory Group for Aeronautical Research and Development North Atlantic Treaty Organization, Butterworths Scientific Publications, Oxford, UK.
234.
Summerfield
,
M.
,
1951
, “
A Theory of Unstable Combustion in Liquid Propellant Rocket Systems
,”
J. Am. Rocket Soc.
,
21
(
5
), pp.
108
114
.
235.
Crocco
,
L.
,
1969
, “
Research on Combustion Instability in Liquid Propellant Rockets
,”
Symp. (Int.) Combust.
,
12
(
1
), pp.
85
99
.
236.
Sirignano
,
W. A.
,
2015
, “
Driving Mechanisms for Combustion Instability
,”
Combust. Sci. Technol.
,
187
(
1–2
), pp.
162
205
.
237.
Kashinath
,
K.
,
Hemchandra
,
S.
, and
Juniper
,
M. P.
,
2013
, “
Nonlinear Thermoacoustics of Ducted Premixed Flames: The Influence of Perturbation Convection Speed
,”
Combust. Flame
,
160
(
12
), pp.
2856
2865
.
238.
Friedman
,
A.
, and
Shinbrot
,
M.
,
1968
, “
Nonlinear Eigenvalue Problems
,”
Acta Math.
,
121
, pp.
77
125
.
239.
Mennicken
,
R.
, and
Möller
,
M.
,
2003
,
Non-Self-Adjoint Boundary Eigenvalue Problems
, Vol.
192
,
Gulf Professional Publishing
, Houston, TX.
240.
Mehrmann
,
V.
, and
Voss
,
H.
,
2004
, “
Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods
,”
GAMM Mitt.
,
27
(
2
), pp.
121
152
.
241.
Betcke
,
T.
,
Higham
,
N. J.
,
Mehrmann
,
V.
,
Schröder
,
C.
, and
Tisseur
,
F.
,
2013
, “
NLEVP: A Collection of Nonlinear Eigenvalue Problems
,”
ACM Trans. Math. Software (TOMS)
,
39
(
2
), p.
1
.
242.
Güttel
,
S.
, and
Tisseur
,
F.
,
2017
, “
The Nonlinear Eigenvalue Problem
,”
Acta Numer.
,
26
, pp.
1
94
.
243.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multiburner Combustion Systems
,”
ASME
Paper No. GT2003-38688.
244.
Bothien
,
M. R.
,
Moeck
,
J. P.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2007
, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
5
), pp.
657
668
.
245.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.
246.
Heiss
,
W. D.
,
2004
, “
Exceptional Points of Non-Hermitian Operators
,”
J. Phys. A: Math. General
,
37
(
6
), pp.
2455
2464
.
247.
Mensah
,
G.
,
Magri
,
L.
,
Silva
,
C.
,
Buschmann
,
P.
, and
Moeck
,
J.
,
2018
, “
Exceptional Points in the Thermoacoustic Spectrum
,”
J. Sound Vib.
,
433
, pp.
124
128
.
248.
Hryniv
,
R.
, and
Lancaster
,
P.
,
1999
, “
On the Perturbation of Analytic Matrix Functions
,”
Integr. Equations Operator Theory
,
34
(
3
), pp.
325
338
.
249.
Roman
,
J. E.
,
Campos
,
C.
,
Romero
,
E.
, and
Tomás
,
A.
,
2015
, “
SLEPc User's Manual
,” D. Sistemes Informàtics i Computació Universitat Politècnica de València, Valencia, Spain, Report No. DSIC-II/24/02.
250.
Brebion
,
M. M.
,
2017
, “
Joint Numerical and Experimental Study of Thermo-Acoustic Instabilities
,”
Ph.D. thesis
, Université de Toulouse, Toulouse, France.https://www.imft.fr/Joint-numerical-and-experimental-study-of-thermo-acoustic-instabilities?lang=fr
251.
Buschmann
,
P.
,
Mensah
,
G. A.
,
Nicoud
,
F.
, and
Moeck
,
J. P.
,
2019
, “
Solution of Thermoacoustic Eigenvalue Problems With a Non-Iterarive Method
,”
ASME
Paper No. GT2019-90834.
252.
Chandramoorthy
,
N.
,
Wang
,
Q.
,
Magri
,
L.
,
Narayanan
,
S. H. K.
, and
Hovland
,
P.
,
2017
, “
Sensitivity Analysis of Hydrodynamic Chaos in Combustion Using NILSS-AD
,”
APS Division of Fluid Dynamics Meeting Abstracts
.
253.
Dennery
,
P.
, and
Krzywicky
,
A.
,
1996
,
Mathematics for Physicists
,
Dover Publications
, Mineola, NY.
254.
Vogel
,
C. R.
, and
Wade
,
J. G.
,
1995
, “
Analysis of Costate Discretizations in Parameter-Estimation for Linear Evolution-Equations
,”
SIAM J. Control Optim.
,
33
(
1
), pp.
227
254
.
255.
Bewley
,
T. R.
,
2001
, “
Flow Control: New Challenges for a New Renaissance
,”
Prog. Aerosp. Sci.
,
37
(
1
), pp.
21
58
.
256.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
,
65
(
3/4
), pp.
393
415
.
257.
Pierce
,
N. A.
, and
Giles
,
M. B.
,
2004
, “
Adjoint and Defect Error Bounding and Correction for Functional Estimates
,”
J. Comput. Phys.
,
200
(
2
), pp.
769
794
.
258.
Hartmann
,
R.
,
2007
, “
Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations
,”
SIAM J. Numer. Anal.
,
45
(
6
), pp.
2671
2696
.
259.
Berg
,
J.
, and
Nordström
,
J.
,
2013
, “
On the Impact of Boundary Conditions on Dual Consistent Finite Difference Discretizations
,”
J. Comput. Phys.
,
236
(
1
), pp.
41
55
.
260.
Oden
,
J. T.
,
1979
,
Applied Functional Analysis
,
Prentice Hall
, Upper Saddle River, NJ.
261.
Kato
,
T.
,
1980
,
Perturbation Theory for Linear Operators
, 2nd ed.,
Springer
,
Berlin
.
262.
Schrödinger
,
E.
,
1928
,
Collected Papers on Wave Mechanics
,
Blackie & Son Limited
, Glasgow, UK.
263.
Vishik
,
M. I.
, and
Lyusternik
,
L. A.
,
1960
, “
The Solution of Some Perturbation Problems for Matrices and Self-Adjoint or Non-Self-Adjoint Differential Equations—I
,”
Russ. Math. Surv.
,
15
(
3
), p.
1
.
264.
Langer
,
H.
, and
Najman
,
B.
,
1989
, “
Remarks on the Perturbation of Analytic Matrix Functions—II
,”
Integr. Equations Operator Theory
,
12
(
3
), pp.
392
407
.
265.
Sun
,
J.-G.
,
1990
, “
Multiple Eigenvalue Sensitivity Analysis
,”
Linear Algebra Appl.
,
137
, pp.
183
211
.
266.
Langer
,
H.
, and
Najman
,
B.
,
1992
, “
Remarks on the Perturbation of Analytic Matrix Functions—III
,”
Integr. Equations Operator Theory
,
15
(
5
), pp.
796
806
.
267.
Lancaster
,
P.
,
Markus
,
A. S.
, and
Zhou
,
F.
,
2003
, “
Perturbation Theory for Analytic Matrix Functions: The Semisimple Case
,”
SIAM J. Matrix Anal. Appl.
,
25
(
3
), pp.
606
626
.
268.
Seyranian
,
A. P.
, and
Mailybaev
,
A. A.
,
2003
, “
Interaction of Eigenvalues in Multi-Parameter Problems
,”
J. Sound Vib.
,
267
(
5
), pp.
1047
1064
.
269.
Seyranian
,
A. P.
,
Kirillov
,
O. N.
, and
Mailybaev
,
A. A.
,
2005
, “
Coupling of Eigenvalues of Complex Matrices at Diabolic and Exceptional Points
,”
J. Phys. A: Math. General
,
38
(
8
), p.
1723
.
270.
Evesque
,
S.
,
Polifke
,
W.
, and
Pankiewitz
,
C.
,
2003
, “
Spinning and Azimuthally Standing Acoustic Modes in Annular Combustors
,”
AIAA
Paper No. 2003-3182.
271.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.
272.
Moeck
,
J. P.
,
2010
, “
Analysis, Modeling, and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
, Technischen Universität Berlin, Berlin.https://d-nb.info/1010103857/34
273.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
274.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(
2151
), p.
20120535
.
275.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A
,
469
(
2157
), p.
20130232
.
276.
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2016
, “
Progress in Analytical Methods to Predict and Control Azimuthal Combustion Instability Modes in Annular Chambers
,”
Phys. Fluids
,
28
(
2
), p.
021303
.
277.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Moeck
,
J. P.
,
2016
, “
Weakly Nonlinear Analysis of Thermoacoustic Instabilities in Annular Combustors
,”
J. Fluid Mech.
,
805
, pp.
52
87
.
278.
Bauerheim
,
M.
,
Ndiaye
,
A.
,
Constantine
,
P.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2016
, “
Symmetry Breaking of Azimuthal Thermoacoustic Modes: The UQ Perspective
,”
J. Fluid Mech.
,
789
, pp.
534
566
.
279.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2018
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME
Paper No. GT2018-75799.
280.
Balaji
,
C.
, and
Chakravarthy
,
S. R.
,
2011
, “
Formulation of Combustion Acoustic Interaction Using Simultaneous Multiple Time and Length Scales and Combustion Instability Prediction in Turbulent Non-Premixed Half Dump Combustor
,”
18th International Congress on Sound and Vibration (ICSV)
, Rio de Janeiro, Brazil, July 10–14.
281.
Lighthill
,
J.
,
1978
, “
Acoustic Streaming
,”
J. Sound Vib.
,
61
(
3
), pp.
391
418
.
282.
Mariappan
,
S.
, and
Sujith
,
R. I.
,
2011
, “
Modelling Nonlinear Thermoacoustic Instability in an Electrically Heated Rijke Tube
,”
J. Fluid Mech.
,
680
, pp.
511
533
.
283.
Chu
,
B. T.
, and
Kovásznay
,
L. S. G.
,
1958
, “
Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas
,”
J. Fluid Mech.
,
3
(
5
), pp.
494
514
.
284.
Silva
,
C. F.
, and
Polifke
,
W.
,
2019
, “
Non-Dimensional Groups for Similarity Analysis of Thermoacoustic Instabilities
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5289
5297
.
285.
Mukherjee
,
N.
, and
Shrira
,
V.
,
2017
, “
Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model
,”
Combust. Flame
,
185
, pp.
188
209
.
286.
Steele
,
R. C.
,
Cowell
,
L. H.
,
Cannon
,
S. M.
, and
Smith
,
C. S.
,
1999
, “
Passive Control of Combustion Instability in Lean Premixed Combustors
,”
ASME
Paper No. 99-GT-52.
287.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
822
829
.
288.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
,
2003
, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
795
810
.
289.
Sohn
,
C. H.
, and
Park
,
J. H.
,
2011
, “
A Comparative Study on Acoustic Damping Induced by Half-Wave, Quarter-Wave, and Helmholtz Resonators
,”
Aerosp. Sci. Technol.
,
15
(
8
), pp.
606
614
.
290.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
331
(
12
), pp.
2753
2763
.
291.
Ghirardo
,
G.
,
Boudy
,
F.
, and
Bothien
,
M. R.
,
2018
, “
Amplitude Statistics Prediction in Thermoacoustics
,”
J. Fluid Mech.
,
844
, pp.
216
246
.
292.
Yang
,
D.
,
Sogaro
,
F. M.
,
Morgans
,
A. S.
, and
Schmid
,
P. J.
,
2019
, “
Optimising the Acoustic Damping of Multiple Helmholtz Resonators Attached to a Thin Annular Duct
,”
J. Sound Vib.
,
444
, pp.
69
84
.
293.
Park
,
I. S.
, and
Sohn
,
C. H.
,
2010
, “
Nonlinear Acoustic Damping Induced by a Half-Wave Resonator in an Acoustic Chamber
,”
Aerosp. Sci. Technol.
,
14
(
6
), pp.
442
450
.
294.
Jamieson
,
N. P.
, and
Juniper
,
M. P.
,
2017
, “
Experimental Sensitivity Analysis of a Linearly Stable Thermoacoustic System Via a Pulsed Forcing Technique
,”
Exp. Fluids
,
58
(
9
), p.
123
.
295.
Aguilar
,
J. G.
,
2018
, “
Sensitivity Analysis and Optimization in Low Order Thermoacoustic Models
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
296.
Giusti
,
A.
,
Magri
,
L.
, and
Zedda
,
M.
,
2018
, “
Flow Inhomogeneities in a Realistic Aeronautical Gas-Turbine Combustor: Formation, Evolution and Indirect Noise
,”
ASME
Paper No. GT2018-76436.
297.
Chu
,
B. T.
,
1963
, “
Analysis of a Self-Sustained Thermally Driven Nonlinear Vibration
,”
Phys. Fluids
,
6
(
11
), p.
1638
.
298.
Yu
,
H.
,
Jaravel
,
T.
,
Juniper
,
M.
,
Ihme
,
M.
, and
Magri
,
L.
,
2019
, “
Data Assimilation and Optimal Calibration in Nonlinear Models of Flame Dynamics
,”
ASME
Paper No. GT2019-92052.
299.
Traverso
,
T.
,
Bottaro
,
A.
, and
Magri
,
L.
,
2018
, “
Data Assimilation in Thermoacoustic Instability With Lagrangian Optimization
,” EuroMech, Vienna, Austria, Sept. 9–13.
300.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.
301.
Constantine
,
P.
,
2015
,
Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
302.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.
303.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.
304.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.
305.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2003
, “
Modelling of Circumferential Modal Coupling Due to Helmholtz Resonators
,”
ASME
Paper No. GT2003-38168.
306.
Bonciolini
,
G.
,
Ebi
,
D.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2018
, “
Experiments and Modelling of Rate-Dependent Transition Delay in a Stochastic Subcritical Bifurcation
,”
R. Soc. Open Sci.
,
5
(
3
), p. 172078.
307.
Shroff
,
G. M.
, and
Keller
,
H. B.
,
1993
, “
Stabilization of Unstable Procedures: The Recursive Projection Method
,”
SIAM J. Num. Anal.
,
30
(
4
), pp.
1099
1120
.
308.
Waugh
,
I.
,
Illingworth
,
S.
, and
Juniper
,
M.
,
2013
, “
Matrix-Free Continuation of Limit Cycles for Bifurcation Analysis of Large Thermoacoustic Systems
,”
J. Comput. Phys.
,
240
, pp.
225
247
.
309.
Citro
,
V.
,
Luchini
,
P.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2017
, “
Efficient Stabilization and Acceleration of Numerical Simulation of Fluid Flows by Residual Recombination
,”
J. Comp. Phys.
,
344
, pp.
234
246
.
310.
Magri
,
L.
, and
Wang
,
Q.
,
2017
, “
Stability, Receptivity and Sensitivity of Linear, Periodic and Chaotic Flows: Application to a Thermoacoustic System
,”
APS Division of Fluid Dynamics Meeting Abstracts
.
311.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.
312.
Friedman
,
B.
, and
Mishoe
,
L. I.
,
1956
, “
Eigenfunction Expansions Associated With a Non-Self-Adjoint Differential Equation
,”
Pacific J. Math.
,
6
(
2
), pp.
249
270
.
313.
Sirkes
,
Z.
, and
Tziperman
,
E.
,
1997
, “
Finite Difference of Adjoint or Adjoint of Finite Difference?
,”
Mon. Weather Rev.
,
125
(
12
), pp.
3373
3378
.
314.
Errico
,
R. M.
,
1997
, “
What is an Adjoint Model?
,”
Bull. Am. Meteorol. Soc.
,
78
(
11
), pp.
2577
2591
.
315.
Plessix
,
R. E.
,
2006
, “
A Review of the Adjoint-State Method for Computing the Gradient of a Functional With Geophysical Applications
,”
Geophys. J. Int.
,
167
(
2
), pp.
495
503
.
316.
Estep
,
D. J.
,
2004
, “
A Short Course on Duality, Adjoint Operators, Green's Functions, and a Posteriori Error Analysis
,” Course Notes, Colorado State University, Fort Collins, CO.
317.
Ibragimov
,
N. H.
,
2006
, “
Integrating Factors, Adjoint Equations and Lagrangians
,”
J. Math. Anal. Appl.
,
318
(
2
), pp.
742
757
.
318.
Giles
,
M. B.
, and
Süli
,
E.
,
2002
, “
Adjoint Methods for PDEs: A Posteriori Error Analysis and Postprocessing by Duality
,”
Acta Numer.
,
11
, pp.
145
236
.
319.
Claerbout
,
J.
,
2014
,
Geophysical Image Estimation by Example
, Jon Claerbaut, Stanford, CA.
You do not currently have access to this content.