This paper reviews the topic of ballistic impact of dry woven fabric composites. It highlights previous work done in modeling the fabrics and the theory involved. Attention is also given to experimental testing, ballistic penetration resistence, projectile characteristics, and failure modes in yarns and fabric. Concepts to further enhance the ballistic penetration resistance of woven fabrics are discussed. This paper serves as an effective source of literature for those interested in conducting research into this topic. Altogether, 176 references have been cited to allow further investigation.

1.
Hansmann
,
H.
, and
Chang
,
K. K.
, 2003, “
Aramid Fibers
,”
ASM Handbook
.
2.
Farjo
,
L. A.
, and
Miclau
,
T.
, 1997, “
Ballistics and Mechanisms of Tissue Wounding
,”
Injury
0020-1383,
28
(
3
), pp.
12
36
.
3.
Roberts
,
J. C.
,
O’Connor
,
J. V.
, and
Ward
,
E. E.
, 2005, “
Modeling the Effect of Nonpenetrating Ballistic Impact as a Means of Detecting Behind-Armor Blunt Trauma
,”
J. Trauma: Inj., Infect., Crit. Care
1079-6061,
58
, pp.
1241
1251
.
4.
Cunniff
,
P. M.
, 1999, “
The Performance of Poly (Para-Phenylene Benzobizoxazole) (PBO) Fabric for Fragmentation Protective Body Armor
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
, pp.
814
821
.
6.
Cunniff
,
P. M.
, 1989, “
A Bibliography of Technical Information Relating to the Ballistic Impact of Body Armor Materials
,” U.S. Army Natick Research, Development and Engineering Center, Materials Research and Engineering Technical Report No. 174.
7.
Cheeseman
,
B. A.
, and
Bogetti
,
T. A.
, 2003, “
Ballistic Impact Into Fabric and Compliant Composite Laminates
,”
Compos. Struct.
0263-8223,
61
, pp.
161
173
.
8.
Vinson
,
J. R.
, and
Zukas
,
J. A.
, 1975, “
On the Ballistic Impact of Textile Body Armor
,”
ASME J. Appl. Mech.
0021-8936,
42
(
6
), pp.
263
268
.
9.
Taylor
,
W. J.
, and
Vinson
,
J. R.
, 1990, “
Modeling Ballistic Impact Into Flexible Materials
,”
AIAA J.
0001-1452,
28
(
2
), pp.
2098
2103
.
10.
Parga-Landa
,
B.
, and
Hernandez-Olivares
,
F.
, 1995, “
An Analytical Model to Predict Impact Behavior of Soft Armors
,”
Int. J. Impact Eng.
0734-743X,
16
(
3
), pp.
455
466
.
11.
Hetherington
,
J. G.
, 1996, “
Energy and Momentum Changes During Ballistic Perforation
,”
Int. J. Impact Eng.
0734-743X,
18
(
3
), pp.
319
337
.
12.
Cox
,
B. N.
, and
Flanagan
,
G.
, 1997, “
Handbook of Analytical Methods for Textile Composites
,” NASA Contractor Report No. 4750.
13.
Chocron-Benloulo
,
I. S.
,
Rodriguez
,
J.
, and
Sanchez-Galvez
,
V.
, 1997, “
A Simple Analytical Model to Simulate Textile Fabric Ballistic Impact Behavior
,”
Text. Res. J.
0040-5175,
67
(
7
), pp.
520
528
.
14.
Navarro
,
C.
, 1998, “
Simplified Modeling of the Ballistic Behavior of Fabrics and Fiber-Reinforced Polymeric Matrix Composites
,”
Key Eng. Mater.
1013-9826,
141–143
, pp.
383
400
.
15.
Walker
,
J. D.
, 1999, “
Constitutive Model for Fabrics With Explicit Static Solution and Ballistic Limit
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
.
16.
Billon
,
H. H.
, and
Robinson
,
D. J.
, 2001, “
Models for the Ballistic Impact of Fabric Armor
,”
Int. J. Impact Eng.
0734-743X,
25
, pp.
411
422
.
17.
Gu
,
B.
, 2003, “
Analytical Modeling for the Ballistic Perforation of Planar Plain-Woven Fabric Target by Projectile
,”
Composites, Part B
1359-8368,
34B
(
4
), pp.
361
371
.
18.
Phoenix
,
L. S.
, and
Porwal
,
P. K.
, 2003, “
A New Membrane Model for the Ballistic Impact Response and V50 Performance of Multi-Ply Fibrous Systems
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
6723
6765
.
19.
Porwal
,
P. K.
, and
Phoenix
,
S. L.
, 2005, “
Modeling System Effects in Ballistic Impact Into Multi-Layered Fibrous Materials for Soft Body Armor
,”
Int. J. Fract.
0376-9429,
135
, pp.
217
249
.
20.
Xue
,
P.
,
Peng
,
X.
, and
Cao
,
J.
, 2003, “
A Non-Orthogonal Constitutive Model for Characterizing Woven Composites
,”
Composites, Part A
1359-835X,
34
, pp.
183
193
.
21.
Naik
,
N. C. K.
,
Shrorao
,
P.
, and
Reddy
,
B. C. K.
, 2006, “
Ballistic Impact Behavior of Woven Fabric Composites; Formulation
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1521
1552
.
22.
Backman
,
M. E.
, and
Goldsmith
,
W.
, 1978, “
The Mechanics of Penetration of Projectiles Into Targets
,”
Int. J. Eng. Sci.
0020-7225,
16
, pp.
1
99
.
23.
Cunniff
,
P. M.
, 1996, “
A Semiempirical Model for the Ballistic Impact Performance of Textile-Based Composites
,”
Text. Res. J.
0040-5175,
66
, pp.
45
59
.
24.
Shim
,
V. P. W.
,
Lim
,
C. T.
, and
Foo
,
K. J.
, 2001, “
Dynamic Mechanical Properties of Fabric Armor
,”
Int. J. Impact Eng.
0734-743X,
25
, pp.
1
15
.
25.
Gu
,
B.
, 2004, “
Ballistic Penetration of Conically Cylindrical Steel Projectile Into Plain-Woven Fabric Target: A Finite Element Simulation
,”
J. Compos. Mater.
0021-9983,
38
(
22
), pp.
2049
2074
.
26.
Roylance
,
D.
,
Chammas
,
P.
, and
Ting
,
J.
, 1995, “
Numerical Modeling of Fabric Impact
,”
Proceedings of the National Meeting of the American Society of Mechanical Engineers (ASME)
,
San Fransisco
.
27.
Roylance
,
D.
, and
Wang
,
S. S.
, 1980, “
Penetration Mechanics of Textile Structures
,”
Ballistic Materials and Penetration Mechanics
,
R. C.
Laible
, ed., pp.
272
292
.
28.
Hearle
,
J. W. S.
,
Leech
,
C. M.
, and
Cork
,
C. R.
, 1981, “
Ballistic Impact Resistance of Multi-Layer Textile Fabrics
,” Report No. AD-A128064.
29.
Shim
,
V. P. W.
,
Tan
,
V. B. C.
, and
Tay
,
T. E.
, 1995, “
Modeling Deformation and Damage Characteristics of Woven Fabric Under Small Projectile Impact
,”
Int. J. Impact Eng.
0734-743X,
16
(
4
), pp.
585
605
.
30.
Lomov
,
S. V.
, 1996, “
Oblique High Velocity Impact on a Textile Woven Target: Mathematical Simulation
,”
Proceedings of Personal Armor System Symposium
,
Colchester, UK
, pp.
145
156
.
31.
Johnson
,
G. R.
,
Beissel
,
S. R.
, and
Cunniff
,
P. M.
, 1999, “
A Computational Model for Fabric Subjected to Ballistic Impact
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
.
32.
Teng
,
J. G.
,
Chen
,
S. F.
, and
Hu
,
J. L.
, 1999, “
A Finite Volume Method for Deformation Analysis of Woven Fabrics
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
2061
2098
.
33.
Simons
,
J. W.
,
Erlich
,
D. C.
, and
Shockey
,
D. A.
, “
Finite Element Design Model for Ballistic Response of Woven Fabrics
,” SRI International.
34.
D’Amato
,
E.
, 2001, “
Finite Element Modeling of Textile Composites
,”
Compos. Struct.
0263-8223,
54
, pp.
467
475
.
35.
D’Amato
,
E.
, 2005, “
Nonlinearities in Mechanical Behavior of Textile Composites
,”
Compos. Struct.
0263-8223,
71
, pp.
61
67
.
36.
Tarfaoui
,
M.
, and
Akesbi
,
S.
, 2001, “
A Finite Element Model of Mechanical Properties of Plain Weave
,”
Colloids Surf., A
0927-7757,
187–188
, pp.
439
448
.
37.
Tarfaoui
,
M.
, and
Akesbi
,
S.
, 2001, “
Numerical Study of the Mechanical Behaviour of Textile Structures
,”
Int. J. Clothing Science and Technology
,
13
(
3∕4
), pp.
166
175
.
38.
Lim
,
C. T.
,
Shim
,
V. P. W.
, and
Ng
,
Y. H.
, 2003, “
Finite-Element Modeling of the Ballistic Impact of Fabric Armor
,”
Int. J. Impact Eng.
0734-743X,
28
, pp.
13
31
.
39.
Tan
,
V. B. C.
,
Lim
,
C. T.
, and
Cheong
,
C. H.
, 2003, “
Perforation of High-Strength Fabric by Projectiles of Different Geometry
,”
Int. J. Impact Eng.
0734-743X,
28
, pp.
207
222
.
40.
Lim
,
C. T.
,
Tan
,
V. B. C.
, and
Cheong
,
C. H.
, 2002, “
Perforation of High-Strength Double-Ply Fabric System by Varying Shaped Projectiles
,”
Int. J. Impact Eng.
0734-743X,
27
, pp.
577
591
.
41.
Gu
,
B.
, and
Xu
,
J.
, 2004, “
Finite Element Calculation of 4-Step 3-Dimensional Braided Composite Under Ballistic Perforation
,”
Composites, Part B
1359-8368,
35
, pp.
291
297
.
42.
Boisse
,
P.
,
Gasser
,
A.
, and
Hagege
,
B.
, 2005, “
Analysis of the Mechanical Behavior of Woven Fibrous Material Using Virtual Tests at the Unit Cell Level
,”
J. Mater. Sci.
0022-2461,
40
, pp.
5955
5962
.
43.
Duan
,
Y.
,
Keefe
,
M.
, and
Bogetti
,
T. A.
, 2006, “
Finite Element Modeling of Transverse Impact on a Ballistic Fabric
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
33
43
.
44.
Duan
,
Y.
,
Keefe
,
M.
, and
Bogetti
,
T. A.
, 2006, “
A Numerical Investigation of the Influence of Friction on the Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1299
1312
.
45.
Duan
,
Y.
,
Keefe
,
M.
, and
Bogetti
,
T. A.
, 2005, “
Modeling the Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric
,”
Compos. Struct.
0263-8223,
68
, pp.
331
337
.
46.
Dasgupta
,
A.
,
Agarwal
,
R. K.
, and
Bhandarkar
,
S. M.
, 1995, “
Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
209
223
.
47.
Vandeurzen
,
P.
,
Ivens
,
J.
, and
Verpoest
,
I.
, 1996, “
A Three-Dimensional Micromechanical Analysis of Woven-Fabric Composites: II. Elastic Analysis
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
1317
1327
.
48.
Tan
,
P.
,
Tong
,
L.
, and
Steven
,
G. P.
, 1999, “
Micromechanics Models for the Elastic Constants and Failure Strengths of Plain Weave Composites
,”
Compos. Struct.
0263-8223,
47
, pp.
797
804
.
49.
Sheng
,
S. Z.
, and
Hoa
,
S. V.
, 2001, “
Three Dimensional Micro-Mechanical Modeling of Woven Fabric Composites
,”
J. Compos. Mater.
0021-9983,
35
(
19
), pp.
1701
1729
.
50.
Tabiei
,
A.
, and
Ivanov
,
I.
, 2004, “
Materially and Geometrically Non-Linear Woven Composite Micro-Mechanical Model With Failure for Finite Element Simulations
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
175
188
.
51.
Tabiei
,
A.
, and
Ivanov
,
I.
, 2002, “
Computational Micro-Mechanical Model of Flexible Woven Fabric for Finite Element Impact Simulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
1259
1276
.
52.
Xue
,
P.
,
Cao
,
J.
, and
Chen
,
J.
, 2005, “
Integrated Micro∕Macro-Mechanical Model of Woven Fabric Composites Under Large Deformation
,”
Compos. Struct.
0263-8223,
70
, pp.
69
80
.
53.
Nadler
,
B.
,
Papadopoulos
,
P.
, and
Steigmann
,
D. J.
, 2006, “
Multi-Scale Constitutive Modeling and Numerical Simulation of Fabric Material
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
206
221
.
54.
Zohdi
,
T. I.
, and
Powell
,
D.
, 2006, “
Multiscale Construction and Large-Scale Simulation of Structural Fabric Undergoing Ballistic Impact
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
94
109
.
55.
Leech
,
C.
,
Hearle
,
J. W. S.
, and
Mansell
,
J.
, 1979, “
A Variational Model for the Arrest of Projectiles by Woven Cloth and Nets
,”
J. Text. Inst.
0040-5000,
70
(
11
), pp.
469
478
.
56.
Roy
,
A. K.
, and
Sihn
,
S.
, 2001, “
Development of a Three-Dimensional Mixed Variational Model for Woven Composites. I. Mathematical Formulation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5935
5947
.
57.
Sihn
,
S.
, and
Roy
,
A. K.
, 2001, “
Development of a Three-Dimensional Mixed Variational Model for Woven Composites. II. Numerical Solution and Validation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5949
5962
.
58.
Susich
,
G.
,
Dogliotti
,
L. M.
, and
Wrigley
,
A. S.
, 1958, “
Microscopic Study of Multi-Layer Nylon Body Panel Armor After Impact
,”
Text. Res. J.
0040-5175,
28
, p.
361
.
59.
Wilde
,
A. F.
,
Rogers
,
J. M.
, and
Roylance
,
D. K.
, 1973, “
Photographic Investigation of High Speed Missile Impact Upon Nylon Fabric (Part 1 Energy Absorption and Cone Radial Velocity in Fabric)
,”
Text. Res. J.
0040-5175,
43
(
12
), pp.
753
761
.
60.
Prosser
,
R. A.
, 1988, “
Penetration of Nylon Ballistic Panels by Fragment-Simulating Projectiles. Part I: A Linear Approximation to the Relationship Between the V50 or Vc Striking Velocity and the Number of Layers of Cloth in the Ballistic Panel
,”
Text. Res. J.
0040-5175, pp.
61
85
.
61.
Prosser
,
R. A.
,
Cohen
,
S. H.
, and
Segars
,
R. A.
, 2000, “
Heat as a Factor in the Penetration of Cloth Ballistic Panels by 0.22 Caliber Projectiles
,”
Text. Res. J.
0040-5175,
70
(
8
), pp.
709
722
.
62.
Field
,
J. E.
, and
Sun
,
Q.
, 1990, “
A High Speed Photographic Study of Impact on Fibers and Woven Fabrics
,”
Proceedings of the 19th International Congress on High Speed Photography and Photonics, Part 2
, pp.
703
712
.
63.
Starratt
,
D.
,
Pageau
,
G.
, and
Vaziri
,
R.
, 1999, “
An Instrumented Experimental Study of the Ballistic Impact Response of Kevlar Fabric
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
.
64.
Cunniff
,
P. M.
, 1999, “
A Design Tool for the Development of Fragmentation Protective Body Armor
,”
18th International Symposium on Ballistics
,
San Antonio, TX
, pp.
1295
1302
.
65.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
, 1999, “
Improved Barriers to Turbine Engine Fragments: Interim Report I
,” Report No. DOT∕FAA∕AR-99∕8, I.
66.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
, 1999, “
Improved Barriers to Turbine Engine Fragments: Interim Report II
,” Report No. DOT∕FAA∕AR-99∕8, II.
67.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
, 2004, “
Improved Barriers to Turbine Engine Fragments: Interim Report III
,” Report No. DOT∕FAA∕AR-99∕8, III.
68.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
, 2002, “
Improved Barriers to Turbine Engine Fragments: Interim Report IV
,” Report No. DOT∕FAA∕AR-99∕8, IV.
69.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
, 2002, “
Improved Barriers to Turbine Engine Fragments: Final Annual Report
,” Report No. DOT∕FAA∕AR-99∕8, V.
70.
Wang
,
Y.
, and
Xia
,
Y.
, 1998, “
The Effects of Strain Rate on the Mechanical Behavior of Kevlar Fiber Bundles: An Experimental and Theoretical Study
,”
Composites, Part A
1359-835X,
29A
, pp.
1411
1415
.
71.
Wang
,
Y.
, and
Xia
,
Y.
, 1999, “
Experimental and Theoretical Study on the Strain Rate and Temperature Dependence of Mechanical Behavior of Kevlar Fiber
,”
Composites, Part A
1359-835X,
30
, pp.
1251
1257
.
72.
Shim
,
V. P. W.
,
Lim
,
C. T.
, and
Yong
,
S. Y.
, 1999, “
An Experimental Study of Penetration of Woven Fabric by Projectile Impact
,”
Impact Response of Materials and Structures, Third International Symposium on Impact Engineering
, pp.
599
565
.
73.
Manchor
,
J.
, and
Frankenberger
,
C.
, 1999, “
Engine Debris Penetration Testing
,” Report No. DOT∕FAA∕AR-99∕19.
74.
Lundin
,
S. J.
, 2001, “
Engine Debris Fuselage Penetration Testing, Phase I
,” Report No. DOT∕FAA∕AR-01∕27.
75.
Orphal
,
D. L.
,
Walker
,
J. D.
, and
Anderson
,
C. E.
, Jr.
, 2001, “
Ballistic Response of Fabrics: Model and Experiments
,”
Shock Compression of Condensed Matter
, pp.
1279
1282
.
76.
Rupert
,
N. L.
, 2002, “
9‐mm Baseline Data Set for the Calibration of Fabric Penetration Models
,”
20th International Symposium on Ballistics
,
Orlando, FL
, Vol.
2
, pp.
1137
1146
.
77.
Barauskas
,
R.
,
Abraitiene
,
A.
, and
Vilkauskas
,
A.
, “
Simulation of a Ballistic Impact of a Deformable Bullet Upon a Multilayer Fabric Package
,”
WIT Transactions on Modeling and Simulation
, Vol.
40
.
78.
Cunniff
,
P. M.
, 1999, “
Decoupled Response of Textile Body
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
, pp.
814
821
.
79.
Cunniff
,
P. M.
, 1999, “
The V50 Performance of Body Armor Under Oblique Impact
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
, pp.
814
821
.
80.
Zohdi
,
T. I.
, 2002, “
Modeling and Simulation of Progressive Penetration of Multilayered Ballistic Fabric Shielding
,”
Comput. Mech.
0178-7675,
29
, pp.
61
67
.
81.
Blankenhorn
,
G.
,
Schweizerhof
,
K.
, and
Finckh
,
H.
, 2003, “
Improved Numerical Investigations of a Projectile Impact on a Textile Structure
,”
Fourth European LS-DYNA Users Conference
.
82.
Hearle
,
J. W. S.
, and
Sultan
,
M. A. I.
, 1974, “
Research on a Basic Study of the High Speed Penetration Dynamics of Textile Materials
,”
Department of Textile Technology, UMIST
, Report No. DA-ERO-124-74-G0059.
83.
Cunniff
,
P. M.
, 1992, “
An Analysis of the System Effects in Woven Fabrics Under Ballistic Impact
,”
Text. Res. J.
0040-5175,
62
(
9
), pp.
495
509
.
84.
Methods Development Group
, LLNL, 1999, DYNA3D User Manual.
85.
Livermore Software Technology Corporation
, 2003, LS-DYNA Version 970 Keyword User’S Manual.
86.
Hallquist
,
J. O.
, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation.
87.
Diehl
,
T.
,
Dixon
,
R. D.
, and
Lamontia
,
M. A.
, 2003, “
The Development and Use of a Robust Modeling Approach for Predicting Structural Performance of Woven Fabric Using ABAQUS
,”
2003 ABAQUS Users’ Conference
.
88.
Tabiei
,
A.
, and
Jiang
,
Y.
, 1999, “
Woven Fabric Composite Material Model With Material Nonlinearity for Nonlinear Finite Element Simulation
,”
Int. J. Solids Struct.
0020-7683,
36
(
18
), pp.
2757
2771
.
89.
Tabiei
,
A.
,
Jiang
,
Y.
, and
Witao
,
Y.
, 2003, “
Novel Micromechanics-Based Woven Fabric Composite Constitutive Model With Material Nonlinear Behavior
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1437
1443
.
90.
Shahkarami
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
, 2002, “
A Numerical Investigation of the Effect of Projectile Mass on the Energy Absorption of Fabric Panels Subjected to Ballistic Impact
,”
20th International Symposium on Ballistics
,
Orlando, FL
,
2
, pp.
802
809
.
91.
Duan
,
Y.
,
Keefe
,
M.
, and
Bogetti
,
T. A.
, 2005, “
Modeling Friction Effects on the Ballistic Impact Behaviour of a Single-Ply High-Strength Fabric
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
996
1012
.
92.
Brown
,
D.
,
Morgan
,
M.
, and
McIlhagger
,
R.
, 2003, “
A System for the Automatic Generation of Solid Models of Woven Structures
,”
Composites, Part A
1359-835X,
34
, pp.
511
515
.
93.
Ting
,
J.
,
Roylance
,
D.
, and
Chi
,
C. H.
, 1993, “
Numeric Modeling of Fabric Panel Response to Ballistic Impact
,”
Proceedings of the 25th International SAMPE Technical Conference
, PA.
94.
Roylance
,
D.
,
Wilde
,
A.
, and
Tocci
,
G.
, 1973, “
Ballistic Impact of Textile Structures
,”
Text. Res. J.
0040-5175,
43
, pp.
34
41
.
95.
Cunniff
,
P. M.
, and
Ting
,
J.
, 1999, “
Development of a Numerical Model to Characterize the Ballistic Behavior of Fabrics
,”
18th International Symposium on Ballistics
,
San Antonio, TX
, pp.
822
828
.
96.
Kamiya
,
R.
,
Cheeseman
,
B. A.
, and
Popper
,
P.
, 2000, “
Some Recent Advances in the Fabrication and Design of Three-Dimensional Textile Preforms: A Review
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
33
47
.
97.
Rao
,
Y.
, and
Farris
,
R. J.
, 2000, “
A Modeling and Experimental Study of the Influence of Twist on the Mechanical Properties of High-Performance Fiber Yarns
,”
J. Appl. Polym. Sci.
0021-8995,
77
, pp.
1938
1949
.
98.
Gasser
,
A.
,
Boisee
,
P.
, and
Hanklar
,
S.
, 2000, “
Mechanical Behavior of Dry Fabric Reinforcements. 3D Simulations Versus Biaxial Tests
,”
Comput. Mater. Sci.
0927-0256,
17
, pp.
7
20
.
99.
Ivanov
,
I.
, and
Tabiei
,
A.
, 2004, “
Loosely Woven Fabric Model With Viscoelastic Crimped Fibers for Ballistic Impact Simulations
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1565
1583
.
100.
Tanov
,
R.
, and
Tabiei
,
A.
, 2001, “
Computationally Efficient Micromechanical Woven Fabric Composite Elastic Constitutive Models
,”
ASME J. Appl. Mech.
0021-8936,
68
.
101.
Ivanov
,
I.
, and
Tabiei
,
A.
, 2002, “
Flexible Woven Fabric Micromechanical Material Model with Fiber Reorientation
,”
Mechanics of Advanced Materials and Structures
,
9
, pp.
37
51
.
102.
Termonia
,
Y.
, 2004, “
Impact Resistance of Woven Fabrics
,”
Text. Res. J.
0040-5175,
74
(
8
), pp.
723
729
.
103.
Termonia
,
Y.
, 2006, “
Puncture Resistance of Fibrous Structures
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1512
1520
.
104.
Termonia
,
Y.
,
Meakin
,
P.
, and
Smith
,
P.
, 1985, “
Theoretical Study of the Influence of the Molecular Weight on the Maximum Tensile Strength of Polymer Fibers
,”
Macromolecules
0024-9297,
18
, pp.
2246
2252
.
105.
Barauskas
,
R.
, and
Kuprys
,
M.
, 2005, “
Collision Handling of Fabric Yarns in Woven Structures
,”
Information Technology and Control
,
34
, pp.
318
326
.
106.
Starratt
,
D.
,
Sanders
,
T.
, and
Cepus
,
E.
, 2000, “
An Efficient Method for Continuous Measurement of Projectile Motion in Ballistic Impact Experiments
,”
Int. J. Impact Eng.
0734-743X,
24
, pp.
155
170
.
107.
Mitchell
,
C. A.
, and
Carr
,
D. J.
, 1999, “
Post Failure Examination of a New Body Armor Textile by Use of an Environmental Scanning Electron Microscope
,”
Electron Microsc Anal
,
161
(
3
), pp.
103
106
.
108.
Field
,
J. E.
,
Walley
,
S. M.
, and
Proud
,
W. G.
, 2004, “
Review of Experimental Techniques for High Rate Deformation and Shock Studies
,”
Int. J. Impact Eng.
0734-743X,
30
, pp.
725
775
.
109.
Schmidt
,
T.
,
Tyson
,
J.
, and
Galanulis
,
K.
, 2005, “
Full-Field Dynamic Deformation and Strain Measurements Using High-Speed Digital Cameras
,”
26th International Congress on High-Speed Photography and Photonics
, Vol.
5580
.
110.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
, 1999, “
Full-Scale Tests of Lightweight Fragment Barriers on Commercial Aircraft
,” Report No. DOT∕FAA∕AR-99∕71.
111.
Erlich
,
D. C.
,
Shockey
,
D. A.
, and
Simons
,
J. W.
, 2003, “
Slow Penetration of Ballistic Fabrics
,” unpublished, p.
179
.
112.
Golub
,
A.
, and
Grubbs
,
R. E.
, 1956, “
Analysis of Sensitivity Experiments When the Levels of Stimulus Cannot Be Controlled
,”
J. Am. Stat. Assoc.
0003-1291,
51
, pp.
257
265
.
113.
Lambert
,
J. P.
, and
Jonas
,
G. H.
, 1976, “
Towards Standardization in Terminal Ballistics Testing: Velocity Representation
,” U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, BRL Report No. 1852.
114.
Yang
,
L. M.
, and
Shim
,
V. P. W.
, 2005, “
An Analysis of Stress Uniformity in Split Hopkinson Bar Test Specimens
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
129
150
.
115.
Kinari
,
T.
,
Hojo
,
A.
, and
Chatani
,
A.
, 1990, “
An Impact Testing Apparatus for Yarn and Mechanical Properties of Aramid Fiber Yarn at High Strain Rates
,”
Proceedings of the 33rd Japan Congress on Materials Research
, pp.
87
91
.
116.
Kinari
,
T.
,
Hojo
,
A.
, and
Shintaku
,
S.
, 1992, “
Impact Tensile Properties of Super Fiber Yarns
,”
J. Mech. Behav. Mater.
0334-8938,
1
, pp.
331
336
.
117.
Cheng
,
M.
,
Chen
,
W.
, and
Weerasooriya
,
T.
, 2005, “
Mechanical Properties of Kevlar KM2 Single Fiber
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
, pp.
197
203
.
118.
Primentas
,
A.
, 2001, “
Puncture and Tear of Woven Fabrics
,”
Journal of Textile and Apparel, Technology and Management
,
1
(
4
).
119.
Shin
,
H.
,
Erlich
,
D. C.
, and
Shockey
,
D. A.
, 2003, “
Test for Measuring Cut Resistance of Yarns
,”
J. Mater. Sci.
0022-2461,
38
, pp.
3603
3610
.
120.
Prosser
,
R. A.
, 1988, “
Penetration of Nylon Ballistic Panels by Fragment-Simulating Projectiles. Part II: Mechanism of Penetration
,”
Text. Res. J.
0040-5175,
58
, pp.
161
165
.
121.
Hadley
,
D. W.
,
Ward
,
I. M.
, and
Ward
,
J.
, 1965, “
The Transverse Compression of Anisotropic Fiber Monofilaments
,”
Proc. R. Soc. London, Ser. A
1364-5021,
285
(
1401
), pp.
275
286
.
122.
Pinnock
,
P. R.
,
Ward
,
I. M.
, and
Wolfe
,
J. M.
, 1966, “
The Compression of Anisotropic Fiber Monofilaments. II
,”
Proc. R. Soc. London, Ser. A
1364-5021,
291
(
1425
), pp.
267
278
.
123.
Kawabata
,
S.
, 1990, “
Measurement of the Transverse Properties of High Performance Fibers
,”
J. Text. Inst.
0040-5000,
81
(
4
), pp.
432
447
.
124.
Cheng
,
M.
, and
Chen
,
W.
, 2003, “
Experimental Investigation of the Stress-Stretch Behavior of EPDM Rubber with Loading Rate Effects
,”
Int. J. Solids Struct.
0020-7683,
40
(
18
), pp.
4749
4768
.
125.
Cheng
,
M.
,
Chen
,
W.
, and
Weerasooriya
,
T.
, 2004, “
Experimental Investigation of the Transverse Mechanical Properties of a Single Kevlar KM2 Fiber
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6215
6232
.
126.
Ting
,
C.
,
Ting
,
J.
, and
Cunniff
,
P. M.
, 1998, “
Numerical Characterization of the Effects of Transverse Yarn Interaction on Textile Ballistic Response
,”
Proceedings of the 1998 30th International SAMPE Technical Conference
,
San Antonio, TX
, pp.
57
67
.
127.
Briscoe
,
B. J.
, and
Motamedi
,
F.
, 1990, “
Role of Interfacial Friction and Lubrication in Yarn and Fabric Mechanics
,”
Text. Res. J.
0040-5175,
60
(
12
), pp.
697
708
.
128.
Briscoe
,
B. J.
, and
Motamedi
,
F.
, 1992, “
The Ballistic Impact Characteristics of Aramid Fabrics: The Influence of Interface Friction
,”
Wear
0043-1648,
158
, pp.
229
247
.
129.
Wetzel
,
E. D.
,
Kirkwood
,
K. M.
, and
Kirkwood
,
J. E.
, 2004, “
Yarn Pull-Out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar KM-2 Fabric, Part I: Quasi-Static Characterization of Yarn Pull-Out
,”
Text. Res. J.
0040-5175, pp.
920
928
.
130.
Wetzel
,
E. D.
,
Kirkwood
,
J. E.
, and
Kirkwood
,
K. M.
, 2004, “
Yarn Pull-Out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar KM-2 Fabric, Part II: Predicting Ballistic Performance
,”
Text. Res. J.
0040-5175, pp.
939
948
.
131.
Rebouillat
,
S.
, 1998, “
Tribological Properties of Woven Para-Aramid Fabrics and Their Constituent Yarns
,”
J. Mater. Sci.
0022-2461,
33
(
13
), pp.
3293
3301
.
132.
Lavielle
,
L.
, 1991, “
Polymer Polymer Friction: Relation to Adhesion
,”
Wear
0043-1648,
151
, pp.
63
75
.
133.
Zeng
,
X. S.
,
Tan
,
V. B. C.
, and
Shim
,
V. P. W.
, “
Modeling Inter-Yarn Friction in Woven Fabric Armor
,”
Int. J. Numer. Methods Eng.
0029-5981, in press.
134.
Carr
,
D. J.
, 1999, “
Failure Mechanisms of Yarns Subjected to Ballistic Impact
,”
J. Mater. Sci.
0022-2461,
18
, pp.
585
588
.
135.
Prevorsek
,
D. C.
,
Kwon
,
Y. D.
, and
Chin
,
H. B.
, 1994, “
Analysis of the Temperature Rise in the Projectile and Extended Chain Polyethylene Fiber Composite Armor During Ballistic Impact and Penetration
,”
Polym. Eng. Sci.
0032-3888,
34
(
2
), pp.
141
152
.
136.
Laible
,
R. C.
, 1980, “
Fibrous Armor
,”
Ballistic Materials and Penetration Mechanics
,
R. C.
Laible
, ed.,
Elsevier Scientific
,
New York
.
137.
Dean
,
F. E.
, and
Fenton
,
G. K.
, 1989, “
Upgrade of Natick Casualty Reduction Models Armortran and Helmetran for Operation on Personal Computers and the IBM 4381
,” U.S. Army Natick Research, Development and Engineering Center Technical Report.
138.
Dusablon
,
L. V.
, 1972, “
The Casualty Reduction Analysis Model for Personal Armor Systems
,” U.S. Army Natick Research, Development and Engineering Center, Natick, Technical Report No. 78.
139.
O’Bryon
,
J. F.
,
Copes
,
W. S.
, and
Sacco
,
W. J.
, 1988, “
Live Fire Testing Addresses Crew Casualty Assessment
,” Army Research, Development and Acquisition Bulletin, pp.
8
10
.
140.
O’Keefe
,
J. A.
, 1988, “
Casualty Reduction Modeling
,” U.S. Army Natick Research, Development and Engineering Center, Technical Report No. Natick∕TR-89∕008L.
141.
Reches
,
M.
, 1980, “
Weopon Effectiveness and Casualty Reduction
,”
Ballistic Materials and Penetration Mechanics
,
R. C.
Laible
, ed.,
Elsevier Scientific
,
New York
.
142.
Bourget
,
D.
, and
Pageau
,
G.
, 1999, “
The Effective Ballistic Resistance Concept: A New Approach for Assessing the Average Energy Absorption Capability of Armor Materials
,”
18th International Symposium on Ballistics
,
San Antonio, TX
, pp.
1287
1294
.
143.
Cunniff
,
P. M.
, 1999, “
Dimensionless Parameters for Optimization of Textile-Based Body Armor Systems
,”
Proceedings of the 18th International and Symposium on Ballistics
,
San Antonio, TX
, pp.
1303
1310
.
144.
Smith
,
J. C.
,
McCrackin
,
F. L.
, and
Schniefer
,
H. F.
, 1958, “
Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading (Part 5: Wave Propagation in Long Textile Yarns Impacted Transversely)
,”
Text. Res. J.
0040-5175,
28
(
4
), pp.
288
302
.
145.
Roylance
,
D.
, 1980, “
Stress Wave Propagation in Fibers-Effects of Cross Overs
,”
Fibre Sci. Technol.
0015-0568,
13
(
5
), pp.
385
395
.
146.
Gu
,
B.
, 2002, “
Strain Rate Effects on the Tensile Behavior of Fibers and Its Application to Ballistic Perforation of Multi-Layered Fabrics
,”
J. Dong Hua Univ. (English Edition)
,
19
(
1
), pp.
5
9
.
147.
Wortmann
,
F. J.
, and
Schulz
,
K. V.
, 1995, “
Non-Linear Viscoelastic Performance of Nomex, Kevlar and Polypropylene Fibers in a Single Step Stress Relaxation Test: 2. Moduli, Viscosities and Isochronal Stress∕Strain Curves
,”
Polymer
0032-3861,
36
(
12
), pp.
2363
2369
.
148.
Chitrangad
,
H.
, “
Hybrid Ballistic Fabric
,” U.S. Patent No. 5,187,003.
149.
Freeston
,
J.
, and
Claus
,
J.
, 1973, “
Strain Wave Reflections During Ballistic Impact of Fabric Panels
,”
Text. Res. J.
0040-5175,
43
(
6
), pp.
348
351
.
150.
Pan
,
N.
,
Lin
,
Y.
, and
Wang
,
X.
, 2000, “
An Oblique Fiber Bundle Test and Analysis
,”
Text. Res. J.
0040-5175,
70
(
8
), pp.
671
674
.
151.
Tan
,
V. B. C.
,
Shim
,
V. P. W.
, and
Zeng
,
X.
, 2005, “
Modeling Crimp in Woven Fabrics Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
561
574
.
152.
Montgomery
,
T. G.
,
Grady
,
P. L.
, and
Tomasino
,
C.
, 1982, “
The Effects of Projectile Geometry on the Performance of Ballistic Fabrics
,”
Text. Res. J.
0040-5175,
52
(
7
), pp.
442
450
.
153.
Zeng
,
X.
,
Tan
,
V. B. C.
, and
Shim
,
V. P. W.
, 2005, “
Influence of Boundary Conditions on the Ballistic Performance of High-Strength Fabric Targets
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
631
642
.
154.
Lin
,
L. C.
,
Bhatnagar
,
A.
, and
Lang
,
D. C.
, 1988, “
Comparison of Ballistic Performance of Composites
,”
Proceedings of the 33rd International SAMPE Symposium
,
Anaheim, CA
, pp.
883
889
.
155.
Kirkland
,
K. M.
,
Tam
,
T. Y.
, and
Weedon
,
G. C.
, 1991, “
New Third-Generation Protective Clothing From High-Performance Polyethylene Fiber
,”
High-Tech Fibrous Materials
,
T. L.
Vigo
and
A. F.
Turbak
, eds.,
American Chemical Society
,
Washington D.C
.
156.
Pereira
,
M. J.
,
Roberts
,
G. D.
, and
Revilock
,
D. M.
, 1997, “
Elevated Temperature Ballistic Impact Testing of PBO and Kevlar Fabrics for Application in Supersonic Jet Engine Fan Containment Systems
,” NASA Technical Memorandum No. 107532.
157.
Martinez
,
M. A.
,
Navarro
,
C.
, and
Cortes
,
R.
, 1993, “
Friction and Wear Behavior of Kevlar Fabrics
,”
J. Mater. Sci.
0022-2461,
28
, pp.
1305
1311
.
158.
Termonia
,
Y.
,
Meakin
,
P.
, and
Smith
,
P.
, 1986, “
Theoretical Study of the Influence of Strain Rate and Temperature on the Maximum Strength of Perfectly Ordered and Oriented Polyethylene
,”
Macromolecules
0024-9297,
19
, pp.
154
159
.
159.
Chou
,
T. W.
, 1992,
Microstructural Design of Fiber Composites
,
Cambridge University Press
,
Cambridge
, pp.
98
113
.
160.
Goda
,
K.
, and
Fukunaga
,
H.
, 1986, “
The Evaluation of the Strength Distribution of Silicon Carbide and Alumina Fibers by a Multi-Modal Weibull Distribution
,”
J. Mater. Sci.
0022-2461,
21
, pp.
4475
4480
.
161.
Yang
,
H. H.
, 1993, “
Kevlar Aramid Fiber
,”
Wiley
,
New York
, pp.
71
102
.
162.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Non-Linear Parameters
,”
J. Soc. Ind. Appl. Math.
0368-4245,
11
(
2
), pp.
431
441
.
163.
Termonia
,
Y.
, and
Smith
,
P.
, 1988, “
A Theoretical Approach to the Calculation of the Maximum Tensile Strength of Polymer Fibers
,”
High Modulus Polymers
,
A. E.
Zachariades
and
R. S.
Porter
, eds.,
Marcel Dekker
,
New York
, pp.
321
362
.
164.
Simons
,
J. W.
,
Kirkpatrick
,
S. W.
, and
Klopp
,
R. W.
, 1999, “
Methods for Modeling Damage in Finite Element Calculations
,”
Proceedings of International Seminar on QuasiImpulsive Analysis
,
Osaka University
,
Japan
, pp.
79
86
.
165.
Chitrangăd
,
H.
, “
Ballistic Structure
,” U.S. Patent No. 5,275,873.
166.
Lee
,
B. L.
,
Walsh
,
T. F.
, and
Won
,
S. T.
, 2001, “
Penetration Failure Mechanisms of Armor-Grade Fiber Composites Under Impact
,”
J. Compos. Mater.
0021-9983,
35
(
18
), pp.
1605
1633
.
167.
Dischler
,
L.
,
Moyer
,
T. T.
, and
Hensen
,
J. B.
, 1998, U.S. Patent No. 5776839.
168.
Dischler
,
L.
, “
Bullet Resistant Fabric and Method of Manufacture
,” U.S. Patent No. 6,248,676.
169.
Chitrangad
,
H.
, and
Rodriguez-Parada
,
J. M.
, “
Fluorinated Finishes for Aramids
,” U.S. Patent No. 5,266,076.
170.
Rebouillat
,
S.
, “
Surface Treated Aramid Fibers and a Process for Making Them
,” U.S. Patent No. 5,520,705.
171.
Bazhenov
,
S.
, 1997, “
Dissipation of Energy by Bulletproof Aramid Fabric
,”
J. Mater. Sci.
0022-2461,
32
, pp.
4167
4173
.
172.
Lee
,
Y. S.
,
Wetzel
,
E. D.
, and
Wagner
,
N. J.
, 2003, “
The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated With a Colloidal Shear Thickening Fluid
,”
J. Mater. Sci.
0022-2461,
38
, pp.
2825
2833
.
173.
Lee
,
Y. S.
,
Wetzel
,
E. D.
, and
Egres
,
R. D.
, Jr.
, “
Advanced Body Armor Utilizing Shear Thickening Fluids
,” unpublished.
174.
Sickinger
,
C.
, and
Herrmann
,
A.
, “
Structural Stitching as a Method to Design High-Performance Composites in Future
,” unpublished.
175.
Chitrangad
,
H.
, “
Aramid Ballistic Structure
,” U.S. Patent No. 6,036,683.
176.
Thostenson
,
E. T.
,
Rez
,
Z.
, and
Chou
,
T.
, 2001, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1899
1912
.
You do not currently have access to this content.