This paper reviews the topic of ballistic impact of dry woven fabric composites. It highlights previous work done in modeling the fabrics and the theory involved. Attention is also given to experimental testing, ballistic penetration resistence, projectile characteristics, and failure modes in yarns and fabric. Concepts to further enhance the ballistic penetration resistance of woven fabrics are discussed. This paper serves as an effective source of literature for those interested in conducting research into this topic. Altogether, 176 references have been cited to allow further investigation.
Issue Section:
Review Articles
Keywords:
armour,
fabrics,
impact testing,
protective clothing,
yarn,
ballistic impact,
woven composite,
yarn,
fabric,
finite element,
material model
1.
Hansmann
, H.
, and Chang
, K. K.
, 2003, “Aramid Fibers
,” ASM Handbook
.2.
Farjo
, L. A.
, and Miclau
, T.
, 1997, “Ballistics and Mechanisms of Tissue Wounding
,” Injury
0020-1383, 28
(3
), pp. 12
–36
.3.
Roberts
, J. C.
, O’Connor
, J. V.
, and Ward
, E. E.
, 2005, “Modeling the Effect of Nonpenetrating Ballistic Impact as a Means of Detecting Behind-Armor Blunt Trauma
,” J. Trauma: Inj., Infect., Crit. Care
1079-6061, 58
, pp. 1241
–1251
.4.
Cunniff
, P. M.
, 1999, “The Performance of Poly (Para-Phenylene Benzobizoxazole) (PBO) Fabric for Fragmentation Protective Body Armor
,” Proceedings of the 18th International Symposium on Ballistics
, San Antonio, TX
, pp. 814
–821
.5.
6.
Cunniff
, P. M.
, 1989, “A Bibliography of Technical Information Relating to the Ballistic Impact of Body Armor Materials
,” U.S. Army Natick Research, Development and Engineering Center, Materials Research and Engineering Technical Report No. 174.7.
Cheeseman
, B. A.
, and Bogetti
, T. A.
, 2003, “Ballistic Impact Into Fabric and Compliant Composite Laminates
,” Compos. Struct.
0263-8223, 61
, pp. 161
–173
.8.
Vinson
, J. R.
, and Zukas
, J. A.
, 1975, “On the Ballistic Impact of Textile Body Armor
,” ASME J. Appl. Mech.
0021-8936, 42
(6
), pp. 263
–268
.9.
Taylor
, W. J.
, and Vinson
, J. R.
, 1990, “Modeling Ballistic Impact Into Flexible Materials
,” AIAA J.
0001-1452, 28
(2
), pp. 2098
–2103
.10.
Parga-Landa
, B.
, and Hernandez-Olivares
, F.
, 1995, “An Analytical Model to Predict Impact Behavior of Soft Armors
,” Int. J. Impact Eng.
0734-743X, 16
(3
), pp. 455
–466
.11.
Hetherington
, J. G.
, 1996, “Energy and Momentum Changes During Ballistic Perforation
,” Int. J. Impact Eng.
0734-743X, 18
(3
), pp. 319
–337
.12.
Cox
, B. N.
, and Flanagan
, G.
, 1997, “Handbook of Analytical Methods for Textile Composites
,” NASA Contractor Report No. 4750.13.
Chocron-Benloulo
, I. S.
, Rodriguez
, J.
, and Sanchez-Galvez
, V.
, 1997, “A Simple Analytical Model to Simulate Textile Fabric Ballistic Impact Behavior
,” Text. Res. J.
0040-5175, 67
(7
), pp. 520
–528
.14.
Navarro
, C.
, 1998, “Simplified Modeling of the Ballistic Behavior of Fabrics and Fiber-Reinforced Polymeric Matrix Composites
,” Key Eng. Mater.
1013-9826, 141–143
, pp. 383
–400
.15.
Walker
, J. D.
, 1999, “Constitutive Model for Fabrics With Explicit Static Solution and Ballistic Limit
,” Proceedings of the 18th International Symposium on Ballistics
, San Antonio, TX
.16.
Billon
, H. H.
, and Robinson
, D. J.
, 2001, “Models for the Ballistic Impact of Fabric Armor
,” Int. J. Impact Eng.
0734-743X, 25
, pp. 411
–422
.17.
Gu
, B.
, 2003, “Analytical Modeling for the Ballistic Perforation of Planar Plain-Woven Fabric Target by Projectile
,” Composites, Part B
1359-8368, 34B
(4
), pp. 361
–371
.18.
Phoenix
, L. S.
, and Porwal
, P. K.
, 2003, “A New Membrane Model for the Ballistic Impact Response and V50 Performance of Multi-Ply Fibrous Systems
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 6723
–6765
.19.
Porwal
, P. K.
, and Phoenix
, S. L.
, 2005, “Modeling System Effects in Ballistic Impact Into Multi-Layered Fibrous Materials for Soft Body Armor
,” Int. J. Fract.
0376-9429, 135
, pp. 217
–249
.20.
Xue
, P.
, Peng
, X.
, and Cao
, J.
, 2003, “A Non-Orthogonal Constitutive Model for Characterizing Woven Composites
,” Composites, Part A
1359-835X, 34
, pp. 183
–193
.21.
Naik
, N. C. K.
, Shrorao
, P.
, and Reddy
, B. C. K.
, 2006, “Ballistic Impact Behavior of Woven Fabric Composites; Formulation
,” Int. J. Impact Eng.
0734-743X, 32
, pp. 1521
–1552
.22.
Backman
, M. E.
, and Goldsmith
, W.
, 1978, “The Mechanics of Penetration of Projectiles Into Targets
,” Int. J. Eng. Sci.
0020-7225, 16
, pp. 1
–99
.23.
Cunniff
, P. M.
, 1996, “A Semiempirical Model for the Ballistic Impact Performance of Textile-Based Composites
,” Text. Res. J.
0040-5175, 66
, pp. 45
–59
.24.
Shim
, V. P. W.
, Lim
, C. T.
, and Foo
, K. J.
, 2001, “Dynamic Mechanical Properties of Fabric Armor
,” Int. J. Impact Eng.
0734-743X, 25
, pp. 1
–15
.25.
Gu
, B.
, 2004, “Ballistic Penetration of Conically Cylindrical Steel Projectile Into Plain-Woven Fabric Target: A Finite Element Simulation
,” J. Compos. Mater.
0021-9983, 38
(22
), pp. 2049
–2074
.26.
Roylance
, D.
, Chammas
, P.
, and Ting
, J.
, 1995, “Numerical Modeling of Fabric Impact
,” Proceedings of the National Meeting of the American Society of Mechanical Engineers (ASME)
, San Fransisco
.27.
Roylance
, D.
, and Wang
, S. S.
, 1980, “Penetration Mechanics of Textile Structures
,” Ballistic Materials and Penetration Mechanics
, R. C.
Laible
, ed., pp. 272
–292
.28.
Hearle
, J. W. S.
, Leech
, C. M.
, and Cork
, C. R.
, 1981, “Ballistic Impact Resistance of Multi-Layer Textile Fabrics
,” Report No. AD-A128064.29.
Shim
, V. P. W.
, Tan
, V. B. C.
, and Tay
, T. E.
, 1995, “Modeling Deformation and Damage Characteristics of Woven Fabric Under Small Projectile Impact
,” Int. J. Impact Eng.
0734-743X, 16
(4
), pp. 585
–605
.30.
Lomov
, S. V.
, 1996, “Oblique High Velocity Impact on a Textile Woven Target: Mathematical Simulation
,” Proceedings of Personal Armor System Symposium
, Colchester, UK
, pp. 145
–156
.31.
Johnson
, G. R.
, Beissel
, S. R.
, and Cunniff
, P. M.
, 1999, “A Computational Model for Fabric Subjected to Ballistic Impact
,” Proceedings of the 18th International Symposium on Ballistics
, San Antonio, TX
.32.
Teng
, J. G.
, Chen
, S. F.
, and Hu
, J. L.
, 1999, “A Finite Volume Method for Deformation Analysis of Woven Fabrics
,” Int. J. Numer. Methods Eng.
0029-5981, 46
, pp. 2061
–2098
.33.
Simons
, J. W.
, Erlich
, D. C.
, and Shockey
, D. A.
, “Finite Element Design Model for Ballistic Response of Woven Fabrics
,” SRI International.34.
D’Amato
, E.
, 2001, “Finite Element Modeling of Textile Composites
,” Compos. Struct.
0263-8223, 54
, pp. 467
–475
.35.
D’Amato
, E.
, 2005, “Nonlinearities in Mechanical Behavior of Textile Composites
,” Compos. Struct.
0263-8223, 71
, pp. 61
–67
.36.
Tarfaoui
, M.
, and Akesbi
, S.
, 2001, “A Finite Element Model of Mechanical Properties of Plain Weave
,” Colloids Surf., A
0927-7757, 187–188
, pp. 439
–448
.37.
Tarfaoui
, M.
, and Akesbi
, S.
, 2001, “Numerical Study of the Mechanical Behaviour of Textile Structures
,” Int. J. Clothing Science and Technology
, 13
(3∕4
), pp. 166
–175
.38.
Lim
, C. T.
, Shim
, V. P. W.
, and Ng
, Y. H.
, 2003, “Finite-Element Modeling of the Ballistic Impact of Fabric Armor
,” Int. J. Impact Eng.
0734-743X, 28
, pp. 13
–31
.39.
Tan
, V. B. C.
, Lim
, C. T.
, and Cheong
, C. H.
, 2003, “Perforation of High-Strength Fabric by Projectiles of Different Geometry
,” Int. J. Impact Eng.
0734-743X, 28
, pp. 207
–222
.40.
Lim
, C. T.
, Tan
, V. B. C.
, and Cheong
, C. H.
, 2002, “Perforation of High-Strength Double-Ply Fabric System by Varying Shaped Projectiles
,” Int. J. Impact Eng.
0734-743X, 27
, pp. 577
–591
.41.
Gu
, B.
, and Xu
, J.
, 2004, “Finite Element Calculation of 4-Step 3-Dimensional Braided Composite Under Ballistic Perforation
,” Composites, Part B
1359-8368, 35
, pp. 291
–297
.42.
Boisse
, P.
, Gasser
, A.
, and Hagege
, B.
, 2005, “Analysis of the Mechanical Behavior of Woven Fibrous Material Using Virtual Tests at the Unit Cell Level
,” J. Mater. Sci.
0022-2461, 40
, pp. 5955
–5962
.43.
Duan
, Y.
, Keefe
, M.
, and Bogetti
, T. A.
, 2006, “Finite Element Modeling of Transverse Impact on a Ballistic Fabric
,” Int. J. Mech. Sci.
0020-7403, 48
, pp. 33
–43
.44.
Duan
, Y.
, Keefe
, M.
, and Bogetti
, T. A.
, 2006, “A Numerical Investigation of the Influence of Friction on the Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,” Int. J. Impact Eng.
0734-743X, 32
, pp. 1299
–1312
.45.
Duan
, Y.
, Keefe
, M.
, and Bogetti
, T. A.
, 2005, “Modeling the Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric
,” Compos. Struct.
0263-8223, 68
, pp. 331
–337
.46.
Dasgupta
, A.
, Agarwal
, R. K.
, and Bhandarkar
, S. M.
, 1995, “Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties
,” Compos. Sci. Technol.
0266-3538, 56
, pp. 209
–223
.47.
Vandeurzen
, P.
, Ivens
, J.
, and Verpoest
, I.
, 1996, “A Three-Dimensional Micromechanical Analysis of Woven-Fabric Composites: II. Elastic Analysis
,” Compos. Sci. Technol.
0266-3538, 56
, pp. 1317
–1327
.48.
Tan
, P.
, Tong
, L.
, and Steven
, G. P.
, 1999, “Micromechanics Models for the Elastic Constants and Failure Strengths of Plain Weave Composites
,” Compos. Struct.
0263-8223, 47
, pp. 797
–804
.49.
Sheng
, S. Z.
, and Hoa
, S. V.
, 2001, “Three Dimensional Micro-Mechanical Modeling of Woven Fabric Composites
,” J. Compos. Mater.
0021-9983, 35
(19
), pp. 1701
–1729
.50.
Tabiei
, A.
, and Ivanov
, I.
, 2004, “Materially and Geometrically Non-Linear Woven Composite Micro-Mechanical Model With Failure for Finite Element Simulations
,” Int. J. Non-Linear Mech.
0020-7462, 39
, pp. 175
–188
.51.
Tabiei
, A.
, and Ivanov
, I.
, 2002, “Computational Micro-Mechanical Model of Flexible Woven Fabric for Finite Element Impact Simulation
,” Int. J. Numer. Methods Eng.
0029-5981, 53
, pp. 1259
–1276
.52.
Xue
, P.
, Cao
, J.
, and Chen
, J.
, 2005, “Integrated Micro∕Macro-Mechanical Model of Woven Fabric Composites Under Large Deformation
,” Compos. Struct.
0263-8223, 70
, pp. 69
–80
.53.
Nadler
, B.
, Papadopoulos
, P.
, and Steigmann
, D. J.
, 2006, “Multi-Scale Constitutive Modeling and Numerical Simulation of Fabric Material
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 206
–221
.54.
Zohdi
, T. I.
, and Powell
, D.
, 2006, “Multiscale Construction and Large-Scale Simulation of Structural Fabric Undergoing Ballistic Impact
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 195
, pp. 94
–109
.55.
Leech
, C.
, Hearle
, J. W. S.
, and Mansell
, J.
, 1979, “A Variational Model for the Arrest of Projectiles by Woven Cloth and Nets
,” J. Text. Inst.
0040-5000, 70
(11
), pp. 469
–478
.56.
Roy
, A. K.
, and Sihn
, S.
, 2001, “Development of a Three-Dimensional Mixed Variational Model for Woven Composites. I. Mathematical Formulation
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 5935
–5947
.57.
Sihn
, S.
, and Roy
, A. K.
, 2001, “Development of a Three-Dimensional Mixed Variational Model for Woven Composites. II. Numerical Solution and Validation
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 5949
–5962
.58.
Susich
, G.
, Dogliotti
, L. M.
, and Wrigley
, A. S.
, 1958, “Microscopic Study of Multi-Layer Nylon Body Panel Armor After Impact
,” Text. Res. J.
0040-5175, 28
, p. 361
.59.
Wilde
, A. F.
, Rogers
, J. M.
, and Roylance
, D. K.
, 1973, “Photographic Investigation of High Speed Missile Impact Upon Nylon Fabric (Part 1 Energy Absorption and Cone Radial Velocity in Fabric)
,” Text. Res. J.
0040-5175, 43
(12
), pp. 753
–761
.60.
Prosser
, R. A.
, 1988, “Penetration of Nylon Ballistic Panels by Fragment-Simulating Projectiles. Part I: A Linear Approximation to the Relationship Between the V50 or Vc Striking Velocity and the Number of Layers of Cloth in the Ballistic Panel
,” Text. Res. J.
0040-5175, pp. 61
–85
.61.
Prosser
, R. A.
, Cohen
, S. H.
, and Segars
, R. A.
, 2000, “Heat as a Factor in the Penetration of Cloth Ballistic Panels by 0.22 Caliber Projectiles
,” Text. Res. J.
0040-5175, 70
(8
), pp. 709
–722
.62.
Field
, J. E.
, and Sun
, Q.
, 1990, “A High Speed Photographic Study of Impact on Fibers and Woven Fabrics
,” Proceedings of the 19th International Congress on High Speed Photography and Photonics, Part 2
, pp. 703
–712
.63.
Starratt
, D.
, Pageau
, G.
, and Vaziri
, R.
, 1999, “An Instrumented Experimental Study of the Ballistic Impact Response of Kevlar Fabric
,” Proceedings of the 18th International Symposium on Ballistics
, San Antonio, TX
.64.
Cunniff
, P. M.
, 1999, “A Design Tool for the Development of Fragmentation Protective Body Armor
,” 18th International Symposium on Ballistics
, San Antonio, TX
, pp. 1295
–1302
.65.
Shockey
, D. A.
, Erlich
, D. C.
, and Simons
, J. W.
, 1999, “Improved Barriers to Turbine Engine Fragments: Interim Report I
,” Report No. DOT∕FAA∕AR-99∕8, I.66.
Shockey
, D. A.
, Erlich
, D. C.
, and Simons
, J. W.
, 1999, “Improved Barriers to Turbine Engine Fragments: Interim Report II
,” Report No. DOT∕FAA∕AR-99∕8, II.67.
Shockey
, D. A.
, Erlich
, D. C.
, and Simons
, J. W.
, 2004, “Improved Barriers to Turbine Engine Fragments: Interim Report III
,” Report No. DOT∕FAA∕AR-99∕8, III.68.
Shockey
, D. A.
, Erlich
, D. C.
, and Simons
, J. W.
, 2002, “Improved Barriers to Turbine Engine Fragments: Interim Report IV
,” Report No. DOT∕FAA∕AR-99∕8, IV.69.
Shockey
, D. A.
, Erlich
, D. C.
, and Simons
, J. W.
, 2002, “Improved Barriers to Turbine Engine Fragments: Final Annual Report
,” Report No. DOT∕FAA∕AR-99∕8, V.70.
Wang
, Y.
, and Xia
, Y.
, 1998, “The Effects of Strain Rate on the Mechanical Behavior of Kevlar Fiber Bundles: An Experimental and Theoretical Study
,” Composites, Part A
1359-835X, 29A
, pp. 1411
–1415
.71.
Wang
, Y.
, and Xia
, Y.
, 1999, “Experimental and Theoretical Study on the Strain Rate and Temperature Dependence of Mechanical Behavior of Kevlar Fiber
,” Composites, Part A
1359-835X, 30
, pp. 1251
–1257
.72.
Shim
, V. P. W.
, Lim
, C. T.
, and Yong
, S. Y.
, 1999, “An Experimental Study of Penetration of Woven Fabric by Projectile Impact
,” Impact Response of Materials and Structures, Third International Symposium on Impact Engineering
, pp. 599
–565
.73.
Manchor
, J.
, and Frankenberger
, C.
, 1999, “Engine Debris Penetration Testing
,” Report No. DOT∕FAA∕AR-99∕19.74.
Lundin
, S. J.
, 2001, “Engine Debris Fuselage Penetration Testing, Phase I
,” Report No. DOT∕FAA∕AR-01∕27.75.
Orphal
, D. L.
, Walker
, J. D.
, and Anderson
, C. E.
, Jr., 2001, “Ballistic Response of Fabrics: Model and Experiments
,” Shock Compression of Condensed Matter
, pp. 1279
–1282
.76.
Rupert
, N. L.
, 2002, “9‐mm Baseline Data Set for the Calibration of Fabric Penetration Models
,” 20th International Symposium on Ballistics
, Orlando, FL
, Vol. 2
, pp. 1137
–1146
.77.
Barauskas
, R.
, Abraitiene
, A.
, and Vilkauskas
, A.
, “Simulation of a Ballistic Impact of a Deformable Bullet Upon a Multilayer Fabric Package
,” WIT Transactions on Modeling and Simulation
, Vol. 40
.78.
Cunniff
, P. M.
, 1999, “Decoupled Response of Textile Body
,” Proceedings of the 18th International Symposium on Ballistics
, San Antonio, TX
, pp. 814
–821
.79.
Cunniff
, P. M.
, 1999, “The V50 Performance of Body Armor Under Oblique Impact
,” Proceedings of the 18th International Symposium on Ballistics
, San Antonio, TX
, pp. 814
–821
.80.
Zohdi
, T. I.
, 2002, “Modeling and Simulation of Progressive Penetration of Multilayered Ballistic Fabric Shielding
,” Comput. Mech.
0178-7675, 29
, pp. 61
–67
.81.
Blankenhorn
, G.
, Schweizerhof
, K.
, and Finckh
, H.
, 2003, “Improved Numerical Investigations of a Projectile Impact on a Textile Structure
,” Fourth European LS-DYNA Users Conference
.82.
Hearle
, J. W. S.
, and Sultan
, M. A. I.
, 1974, “Research on a Basic Study of the High Speed Penetration Dynamics of Textile Materials
,” Department of Textile Technology, UMIST
, Report No. DA-ERO-124-74-G0059.83.
Cunniff
, P. M.
, 1992, “An Analysis of the System Effects in Woven Fabrics Under Ballistic Impact
,” Text. Res. J.
0040-5175, 62
(9
), pp. 495
–509
.84.
Methods Development Group
, LLNL, 1999, DYNA3D User Manual.85.
Livermore Software Technology Corporation
, 2003, LS-DYNA Version 970 Keyword User’S Manual.86.
Hallquist
, J. O.
, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation.87.
Diehl
, T.
, Dixon
, R. D.
, and Lamontia
, M. A.
, 2003, “The Development and Use of a Robust Modeling Approach for Predicting Structural Performance of Woven Fabric Using ABAQUS
,” 2003 ABAQUS Users’ Conference
.88.
Tabiei
, A.
, and Jiang
, Y.
, 1999, “Woven Fabric Composite Material Model With Material Nonlinearity for Nonlinear Finite Element Simulation
,” Int. J. Solids Struct.
0020-7683, 36
(18
), pp. 2757
–2771
.89.
Tabiei
, A.
, Jiang
, Y.
, and Witao
, Y.
, 2003, “Novel Micromechanics-Based Woven Fabric Composite Constitutive Model With Material Nonlinear Behavior
,” AIAA J.
0001-1452, 38
(8
), pp. 1437
–1443
.90.
Shahkarami
, A.
, Vaziri
, R.
, and Poursartip
, A.
, 2002, “A Numerical Investigation of the Effect of Projectile Mass on the Energy Absorption of Fabric Panels Subjected to Ballistic Impact
,” 20th International Symposium on Ballistics
, Orlando, FL
, 2
, pp. 802
–809
.91.
Duan
, Y.
, Keefe
, M.
, and Bogetti
, T. A.
, 2005, “Modeling Friction Effects on the Ballistic Impact Behaviour of a Single-Ply High-Strength Fabric
,” Int. J. Impact Eng.
0734-743X, 31
, pp. 996
–1012
.92.
Brown
, D.
, Morgan
, M.
, and McIlhagger
, R.
, 2003, “A System for the Automatic Generation of Solid Models of Woven Structures
,” Composites, Part A
1359-835X, 34
, pp. 511
–515
.93.
Ting
, J.
, Roylance
, D.
, and Chi
, C. H.
, 1993, “Numeric Modeling of Fabric Panel Response to Ballistic Impact
,” Proceedings of the 25th International SAMPE Technical Conference
, PA.94.
Roylance
, D.
, Wilde
, A.
, and Tocci
, G.
, 1973, “Ballistic Impact of Textile Structures
,” Text. Res. J.
0040-5175, 43
, pp. 34
–41
.95.
Cunniff
, P. M.
, and Ting
, J.
, 1999, “Development of a Numerical Model to Characterize the Ballistic Behavior of Fabrics
,” 18th International Symposium on Ballistics
, San Antonio, TX
, pp. 822
–828
.96.
Kamiya
, R.
, Cheeseman
, B. A.
, and Popper
, P.
, 2000, “Some Recent Advances in the Fabrication and Design of Three-Dimensional Textile Preforms: A Review
,” Compos. Sci. Technol.
0266-3538, 60
, pp. 33
–47
.97.
Rao
, Y.
, and Farris
, R. J.
, 2000, “A Modeling and Experimental Study of the Influence of Twist on the Mechanical Properties of High-Performance Fiber Yarns
,” J. Appl. Polym. Sci.
0021-8995, 77
, pp. 1938
–1949
.98.
Gasser
, A.
, Boisee
, P.
, and Hanklar
, S.
, 2000, “Mechanical Behavior of Dry Fabric Reinforcements. 3D Simulations Versus Biaxial Tests
,” Comput. Mater. Sci.
0927-0256, 17
, pp. 7
–20
.99.
Ivanov
, I.
, and Tabiei
, A.
, 2004, “Loosely Woven Fabric Model With Viscoelastic Crimped Fibers for Ballistic Impact Simulations
,” Int. J. Numer. Methods Eng.
0029-5981, 61
, pp. 1565
–1583
.100.
Tanov
, R.
, and Tabiei
, A.
, 2001, “Computationally Efficient Micromechanical Woven Fabric Composite Elastic Constitutive Models
,” ASME J. Appl. Mech.
0021-8936, 68
.101.
Ivanov
, I.
, and Tabiei
, A.
, 2002, “Flexible Woven Fabric Micromechanical Material Model with Fiber Reorientation
,” Mechanics of Advanced Materials and Structures
, 9
, pp. 37
–51
.102.
Termonia
, Y.
, 2004, “Impact Resistance of Woven Fabrics
,” Text. Res. J.
0040-5175, 74
(8
), pp. 723
–729
.103.
Termonia
, Y.
, 2006, “Puncture Resistance of Fibrous Structures
,” Int. J. Impact Eng.
0734-743X, 32
, pp. 1512
–1520
.104.
Termonia
, Y.
, Meakin
, P.
, and Smith
, P.
, 1985, “Theoretical Study of the Influence of the Molecular Weight on the Maximum Tensile Strength of Polymer Fibers
,” Macromolecules
0024-9297, 18
, pp. 2246
–2252
.105.
Barauskas
, R.
, and Kuprys
, M.
, 2005, “Collision Handling of Fabric Yarns in Woven Structures
,” Information Technology and Control
, 34
, pp. 318
–326
.106.
Starratt
, D.
, Sanders
, T.
, and Cepus
, E.
, 2000, “An Efficient Method for Continuous Measurement of Projectile Motion in Ballistic Impact Experiments
,” Int. J. Impact Eng.
0734-743X, 24
, pp. 155
–170
.107.
Mitchell
, C. A.
, and Carr
, D. J.
, 1999, “Post Failure Examination of a New Body Armor Textile by Use of an Environmental Scanning Electron Microscope
,” Electron Microsc Anal
, 161
(3
), pp. 103
–106
.108.
Field
, J. E.
, Walley
, S. M.
, and Proud
, W. G.
, 2004, “Review of Experimental Techniques for High Rate Deformation and Shock Studies
,” Int. J. Impact Eng.
0734-743X, 30
, pp. 725
–775
.109.
Schmidt
, T.
, Tyson
, J.
, and Galanulis
, K.
, 2005, “Full-Field Dynamic Deformation and Strain Measurements Using High-Speed Digital Cameras
,” 26th International Congress on High-Speed Photography and Photonics
, Vol. 5580
.110.
Shockey
, D. A.
, Erlich
, D. C.
, and Simons
, J. W.
, 1999, “Full-Scale Tests of Lightweight Fragment Barriers on Commercial Aircraft
,” Report No. DOT∕FAA∕AR-99∕71.111.
Erlich
, D. C.
, Shockey
, D. A.
, and Simons
, J. W.
, 2003, “Slow Penetration of Ballistic Fabrics
,” unpublished, p. 179
.112.
Golub
, A.
, and Grubbs
, R. E.
, 1956, “Analysis of Sensitivity Experiments When the Levels of Stimulus Cannot Be Controlled
,” J. Am. Stat. Assoc.
0003-1291, 51
, pp. 257
–265
.113.
Lambert
, J. P.
, and Jonas
, G. H.
, 1976, “Towards Standardization in Terminal Ballistics Testing: Velocity Representation
,” U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, BRL Report No. 1852.114.
Yang
, L. M.
, and Shim
, V. P. W.
, 2005, “An Analysis of Stress Uniformity in Split Hopkinson Bar Test Specimens
,” Int. J. Impact Eng.
0734-743X, 31
, pp. 129
–150
.115.
Kinari
, T.
, Hojo
, A.
, and Chatani
, A.
, 1990, “An Impact Testing Apparatus for Yarn and Mechanical Properties of Aramid Fiber Yarn at High Strain Rates
,” Proceedings of the 33rd Japan Congress on Materials Research
, pp. 87
–91
.116.
Kinari
, T.
, Hojo
, A.
, and Shintaku
, S.
, 1992, “Impact Tensile Properties of Super Fiber Yarns
,” J. Mech. Behav. Mater.
0334-8938, 1
, pp. 331
–336
.117.
Cheng
, M.
, Chen
, W.
, and Weerasooriya
, T.
, 2005, “Mechanical Properties of Kevlar KM2 Single Fiber
,” ASME J. Eng. Mater. Technol.
0094-4289, 127
, pp. 197
–203
.118.
Primentas
, A.
, 2001, “Puncture and Tear of Woven Fabrics
,” Journal of Textile and Apparel, Technology and Management
, 1
(4
).119.
Shin
, H.
, Erlich
, D. C.
, and Shockey
, D. A.
, 2003, “Test for Measuring Cut Resistance of Yarns
,” J. Mater. Sci.
0022-2461, 38
, pp. 3603
–3610
.120.
Prosser
, R. A.
, 1988, “Penetration of Nylon Ballistic Panels by Fragment-Simulating Projectiles. Part II: Mechanism of Penetration
,” Text. Res. J.
0040-5175, 58
, pp. 161
–165
.121.
Hadley
, D. W.
, Ward
, I. M.
, and Ward
, J.
, 1965, “The Transverse Compression of Anisotropic Fiber Monofilaments
,” Proc. R. Soc. London, Ser. A
1364-5021, 285
(1401
), pp. 275
–286
.122.
Pinnock
, P. R.
, Ward
, I. M.
, and Wolfe
, J. M.
, 1966, “The Compression of Anisotropic Fiber Monofilaments. II
,” Proc. R. Soc. London, Ser. A
1364-5021, 291
(1425
), pp. 267
–278
.123.
Kawabata
, S.
, 1990, “Measurement of the Transverse Properties of High Performance Fibers
,” J. Text. Inst.
0040-5000, 81
(4
), pp. 432
–447
.124.
Cheng
, M.
, and Chen
, W.
, 2003, “Experimental Investigation of the Stress-Stretch Behavior of EPDM Rubber with Loading Rate Effects
,” Int. J. Solids Struct.
0020-7683, 40
(18
), pp. 4749
–4768
.125.
Cheng
, M.
, Chen
, W.
, and Weerasooriya
, T.
, 2004, “Experimental Investigation of the Transverse Mechanical Properties of a Single Kevlar KM2 Fiber
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 6215
–6232
.126.
Ting
, C.
, Ting
, J.
, and Cunniff
, P. M.
, 1998, “Numerical Characterization of the Effects of Transverse Yarn Interaction on Textile Ballistic Response
,” Proceedings of the 1998 30th International SAMPE Technical Conference
, San Antonio, TX
, pp. 57
–67
.127.
Briscoe
, B. J.
, and Motamedi
, F.
, 1990, “Role of Interfacial Friction and Lubrication in Yarn and Fabric Mechanics
,” Text. Res. J.
0040-5175, 60
(12
), pp. 697
–708
.128.
Briscoe
, B. J.
, and Motamedi
, F.
, 1992, “The Ballistic Impact Characteristics of Aramid Fabrics: The Influence of Interface Friction
,” Wear
0043-1648, 158
, pp. 229
–247
.129.
Wetzel
, E. D.
, Kirkwood
, K. M.
, and Kirkwood
, J. E.
, 2004, “Yarn Pull-Out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar KM-2 Fabric, Part I: Quasi-Static Characterization of Yarn Pull-Out
,” Text. Res. J.
0040-5175, pp. 920
–928
.130.
Wetzel
, E. D.
, Kirkwood
, J. E.
, and Kirkwood
, K. M.
, 2004, “Yarn Pull-Out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar KM-2 Fabric, Part II: Predicting Ballistic Performance
,” Text. Res. J.
0040-5175, pp. 939
–948
.131.
Rebouillat
, S.
, 1998, “Tribological Properties of Woven Para-Aramid Fabrics and Their Constituent Yarns
,” J. Mater. Sci.
0022-2461, 33
(13
), pp. 3293
–3301
.132.
Lavielle
, L.
, 1991, “Polymer Polymer Friction: Relation to Adhesion
,” Wear
0043-1648, 151
, pp. 63
–75
.133.
Zeng
, X. S.
, Tan
, V. B. C.
, and Shim
, V. P. W.
, “Modeling Inter-Yarn Friction in Woven Fabric Armor
,” Int. J. Numer. Methods Eng.
0029-5981, in press.134.
Carr
, D. J.
, 1999, “Failure Mechanisms of Yarns Subjected to Ballistic Impact
,” J. Mater. Sci.
0022-2461, 18
, pp. 585
–588
.135.
Prevorsek
, D. C.
, Kwon
, Y. D.
, and Chin
, H. B.
, 1994, “Analysis of the Temperature Rise in the Projectile and Extended Chain Polyethylene Fiber Composite Armor During Ballistic Impact and Penetration
,” Polym. Eng. Sci.
0032-3888, 34
(2
), pp. 141
–152
.136.
Laible
, R. C.
, 1980, “Fibrous Armor
,” Ballistic Materials and Penetration Mechanics
, R. C.
Laible
, ed., Elsevier Scientific
, New York
.137.
Dean
, F. E.
, and Fenton
, G. K.
, 1989, “Upgrade of Natick Casualty Reduction Models Armortran and Helmetran for Operation on Personal Computers and the IBM 4381
,” U.S. Army Natick Research, Development and Engineering Center Technical Report.138.
Dusablon
, L. V.
, 1972, “The Casualty Reduction Analysis Model for Personal Armor Systems
,” U.S. Army Natick Research, Development and Engineering Center, Natick, Technical Report No. 78.139.
O’Bryon
, J. F.
, Copes
, W. S.
, and Sacco
, W. J.
, 1988, “Live Fire Testing Addresses Crew Casualty Assessment
,” Army Research, Development and Acquisition Bulletin, pp. 8
–10
.140.
O’Keefe
, J. A.
, 1988, “Casualty Reduction Modeling
,” U.S. Army Natick Research, Development and Engineering Center, Technical Report No. Natick∕TR-89∕008L.141.
Reches
, M.
, 1980, “Weopon Effectiveness and Casualty Reduction
,” Ballistic Materials and Penetration Mechanics
, R. C.
Laible
, ed., Elsevier Scientific
, New York
.142.
Bourget
, D.
, and Pageau
, G.
, 1999, “The Effective Ballistic Resistance Concept: A New Approach for Assessing the Average Energy Absorption Capability of Armor Materials
,” 18th International Symposium on Ballistics
, San Antonio, TX
, pp. 1287
–1294
.143.
Cunniff
, P. M.
, 1999, “Dimensionless Parameters for Optimization of Textile-Based Body Armor Systems
,” Proceedings of the 18th International and Symposium on Ballistics
, San Antonio, TX
, pp. 1303
–1310
.144.
Smith
, J. C.
, McCrackin
, F. L.
, and Schniefer
, H. F.
, 1958, “Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading (Part 5: Wave Propagation in Long Textile Yarns Impacted Transversely)
,” Text. Res. J.
0040-5175, 28
(4
), pp. 288
–302
.145.
Roylance
, D.
, 1980, “Stress Wave Propagation in Fibers-Effects of Cross Overs
,” Fibre Sci. Technol.
0015-0568, 13
(5
), pp. 385
–395
.146.
Gu
, B.
, 2002, “Strain Rate Effects on the Tensile Behavior of Fibers and Its Application to Ballistic Perforation of Multi-Layered Fabrics
,” J. Dong Hua Univ. (English Edition)
, 19
(1
), pp. 5
–9
.147.
Wortmann
, F. J.
, and Schulz
, K. V.
, 1995, “Non-Linear Viscoelastic Performance of Nomex, Kevlar and Polypropylene Fibers in a Single Step Stress Relaxation Test: 2. Moduli, Viscosities and Isochronal Stress∕Strain Curves
,” Polymer
0032-3861, 36
(12
), pp. 2363
–2369
.148.
Chitrangad
, H.
, “Hybrid Ballistic Fabric
,” U.S. Patent No. 5,187,003.149.
Freeston
, J.
, and Claus
, J.
, 1973, “Strain Wave Reflections During Ballistic Impact of Fabric Panels
,” Text. Res. J.
0040-5175, 43
(6
), pp. 348
–351
.150.
Pan
, N.
, Lin
, Y.
, and Wang
, X.
, 2000, “An Oblique Fiber Bundle Test and Analysis
,” Text. Res. J.
0040-5175, 70
(8
), pp. 671
–674
.151.
Tan
, V. B. C.
, Shim
, V. P. W.
, and Zeng
, X.
, 2005, “Modeling Crimp in Woven Fabrics Subjected to Ballistic Impact
,” Int. J. Impact Eng.
0734-743X, 32
, pp. 561
–574
.152.
Montgomery
, T. G.
, Grady
, P. L.
, and Tomasino
, C.
, 1982, “The Effects of Projectile Geometry on the Performance of Ballistic Fabrics
,” Text. Res. J.
0040-5175, 52
(7
), pp. 442
–450
.153.
Zeng
, X.
, Tan
, V. B. C.
, and Shim
, V. P. W.
, 2005, “Influence of Boundary Conditions on the Ballistic Performance of High-Strength Fabric Targets
,” Int. J. Impact Eng.
0734-743X, 32
, pp. 631
–642
.154.
Lin
, L. C.
, Bhatnagar
, A.
, and Lang
, D. C.
, 1988, “Comparison of Ballistic Performance of Composites
,” Proceedings of the 33rd International SAMPE Symposium
, Anaheim, CA
, pp. 883
–889
.155.
Kirkland
, K. M.
, Tam
, T. Y.
, and Weedon
, G. C.
, 1991, “New Third-Generation Protective Clothing From High-Performance Polyethylene Fiber
,” High-Tech Fibrous Materials
, T. L.
Vigo
and A. F.
Turbak
, eds., American Chemical Society
, Washington D.C
.156.
Pereira
, M. J.
, Roberts
, G. D.
, and Revilock
, D. M.
, 1997, “Elevated Temperature Ballistic Impact Testing of PBO and Kevlar Fabrics for Application in Supersonic Jet Engine Fan Containment Systems
,” NASA Technical Memorandum No. 107532.157.
Martinez
, M. A.
, Navarro
, C.
, and Cortes
, R.
, 1993, “Friction and Wear Behavior of Kevlar Fabrics
,” J. Mater. Sci.
0022-2461, 28
, pp. 1305
–1311
.158.
Termonia
, Y.
, Meakin
, P.
, and Smith
, P.
, 1986, “Theoretical Study of the Influence of Strain Rate and Temperature on the Maximum Strength of Perfectly Ordered and Oriented Polyethylene
,” Macromolecules
0024-9297, 19
, pp. 154
–159
.159.
Chou
, T. W.
, 1992, Microstructural Design of Fiber Composites
, Cambridge University Press
, Cambridge
, pp. 98
–113
.160.
Goda
, K.
, and Fukunaga
, H.
, 1986, “The Evaluation of the Strength Distribution of Silicon Carbide and Alumina Fibers by a Multi-Modal Weibull Distribution
,” J. Mater. Sci.
0022-2461, 21
, pp. 4475
–4480
.161.
Yang
, H. H.
, 1993, “Kevlar Aramid Fiber
,” Wiley
, New York
, pp. 71
–102
.162.
Marquardt
, D. W.
, 1963, “An Algorithm for Least-Squares Estimation of Non-Linear Parameters
,” J. Soc. Ind. Appl. Math.
0368-4245, 11
(2
), pp. 431
–441
.163.
Termonia
, Y.
, and Smith
, P.
, 1988, “A Theoretical Approach to the Calculation of the Maximum Tensile Strength of Polymer Fibers
,” High Modulus Polymers
, A. E.
Zachariades
and R. S.
Porter
, eds., Marcel Dekker
, New York
, pp. 321
–362
.164.
Simons
, J. W.
, Kirkpatrick
, S. W.
, and Klopp
, R. W.
, 1999, “Methods for Modeling Damage in Finite Element Calculations
,” Proceedings of International Seminar on QuasiImpulsive Analysis
, Osaka University
, Japan
, pp. 79
–86
.165.
Chitrangăd
, H.
, “Ballistic Structure
,” U.S. Patent No. 5,275,873.166.
Lee
, B. L.
, Walsh
, T. F.
, and Won
, S. T.
, 2001, “Penetration Failure Mechanisms of Armor-Grade Fiber Composites Under Impact
,” J. Compos. Mater.
0021-9983, 35
(18
), pp. 1605
–1633
.167.
Dischler
, L.
, Moyer
, T. T.
, and Hensen
, J. B.
, 1998, U.S. Patent No. 5776839.168.
Dischler
, L.
, “Bullet Resistant Fabric and Method of Manufacture
,” U.S. Patent No. 6,248,676.169.
Chitrangad
, H.
, and Rodriguez-Parada
, J. M.
, “Fluorinated Finishes for Aramids
,” U.S. Patent No. 5,266,076.170.
Rebouillat
, S.
, “Surface Treated Aramid Fibers and a Process for Making Them
,” U.S. Patent No. 5,520,705.171.
Bazhenov
, S.
, 1997, “Dissipation of Energy by Bulletproof Aramid Fabric
,” J. Mater. Sci.
0022-2461, 32
, pp. 4167
–4173
.172.
Lee
, Y. S.
, Wetzel
, E. D.
, and Wagner
, N. J.
, 2003, “The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated With a Colloidal Shear Thickening Fluid
,” J. Mater. Sci.
0022-2461, 38
, pp. 2825
–2833
.173.
Lee
, Y. S.
, Wetzel
, E. D.
, and Egres
, R. D.
, Jr., “Advanced Body Armor Utilizing Shear Thickening Fluids
,” unpublished.174.
Sickinger
, C.
, and Herrmann
, A.
, “Structural Stitching as a Method to Design High-Performance Composites in Future
,” unpublished.175.
Chitrangad
, H.
, “Aramid Ballistic Structure
,” U.S. Patent No. 6,036,683.176.
Thostenson
, E. T.
, Rez
, Z.
, and Chou
, T.
, 2001, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,” Compos. Sci. Technol.
0266-3538, 61
, pp. 1899
–1912
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.